@inproceedings{fu-ma-2018-speed,
title = "Speed Reading: Learning to Read {F}or{B}ackward via Shuttle",
author = "Fu, Tsu-Jui and
Ma, Wei-Yun",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1474/",
doi = "10.18653/v1/D18-1474",
pages = "4439--4448",
abstract = "We present LSTM-Shuttle, which applies human speed reading techniques to natural language processing tasks for accurate and efficient comprehension. In contrast to previous work, LSTM-Shuttle not only reads shuttling forward but also goes back. Shuttling forward enables high efficiency, and going backward gives the model a chance to recover lost information, ensuring better prediction. We evaluate LSTM-Shuttle on sentiment analysis, news classification, and cloze on IMDB, Rotten Tomatoes, AG, and Children`s Book Test datasets. We show that LSTM-Shuttle predicts both better and more quickly. To demonstrate how LSTM-Shuttle actually behaves, we also analyze the shuttling operation and present a case study."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fu-ma-2018-speed">
<titleInfo>
<title>Speed Reading: Learning to Read ForBackward via Shuttle</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tsu-Jui</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei-Yun</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present LSTM-Shuttle, which applies human speed reading techniques to natural language processing tasks for accurate and efficient comprehension. In contrast to previous work, LSTM-Shuttle not only reads shuttling forward but also goes back. Shuttling forward enables high efficiency, and going backward gives the model a chance to recover lost information, ensuring better prediction. We evaluate LSTM-Shuttle on sentiment analysis, news classification, and cloze on IMDB, Rotten Tomatoes, AG, and Children‘s Book Test datasets. We show that LSTM-Shuttle predicts both better and more quickly. To demonstrate how LSTM-Shuttle actually behaves, we also analyze the shuttling operation and present a case study.</abstract>
<identifier type="citekey">fu-ma-2018-speed</identifier>
<identifier type="doi">10.18653/v1/D18-1474</identifier>
<location>
<url>https://aclanthology.org/D18-1474/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>4439</start>
<end>4448</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Speed Reading: Learning to Read ForBackward via Shuttle
%A Fu, Tsu-Jui
%A Ma, Wei-Yun
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F fu-ma-2018-speed
%X We present LSTM-Shuttle, which applies human speed reading techniques to natural language processing tasks for accurate and efficient comprehension. In contrast to previous work, LSTM-Shuttle not only reads shuttling forward but also goes back. Shuttling forward enables high efficiency, and going backward gives the model a chance to recover lost information, ensuring better prediction. We evaluate LSTM-Shuttle on sentiment analysis, news classification, and cloze on IMDB, Rotten Tomatoes, AG, and Children‘s Book Test datasets. We show that LSTM-Shuttle predicts both better and more quickly. To demonstrate how LSTM-Shuttle actually behaves, we also analyze the shuttling operation and present a case study.
%R 10.18653/v1/D18-1474
%U https://aclanthology.org/D18-1474/
%U https://doi.org/10.18653/v1/D18-1474
%P 4439-4448
Markdown (Informal)
[Speed Reading: Learning to Read ForBackward via Shuttle](https://aclanthology.org/D18-1474/) (Fu & Ma, EMNLP 2018)
ACL