@inproceedings{zhang-etal-2018-learning-universal,
title = "Learning Universal Sentence Representations with Mean-Max Attention Autoencoder",
author = "Zhang, Minghua and
Wu, Yunfang and
Li, Weikang and
Li, Wei",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1481/",
doi = "10.18653/v1/D18-1481",
pages = "4514--4523",
abstract = "In order to learn universal sentence representations, previous methods focus on complex recurrent neural networks or supervised learning. In this paper, we propose a mean-max attention autoencoder (mean-max AAE) within the encoder-decoder framework. Our autoencoder rely entirely on the MultiHead self-attention mechanism to reconstruct the input sequence. In the encoding we propose a mean-max strategy that applies both mean and max pooling operations over the hidden vectors to capture diverse information of the input. To enable the information to steer the reconstruction process dynamically, the decoder performs attention over the mean-max representation. By training our model on a large collection of unlabelled data, we obtain high-quality representations of sentences. Experimental results on a broad range of 10 transfer tasks demonstrate that our model outperforms the state-of-the-art unsupervised single methods, including the classical skip-thoughts and the advanced skip-thoughts+LN model. Furthermore, compared with the traditional recurrent neural network, our mean-max AAE greatly reduce the training time."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2018-learning-universal">
<titleInfo>
<title>Learning Universal Sentence Representations with Mean-Max Attention Autoencoder</title>
</titleInfo>
<name type="personal">
<namePart type="given">Minghua</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunfang</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weikang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In order to learn universal sentence representations, previous methods focus on complex recurrent neural networks or supervised learning. In this paper, we propose a mean-max attention autoencoder (mean-max AAE) within the encoder-decoder framework. Our autoencoder rely entirely on the MultiHead self-attention mechanism to reconstruct the input sequence. In the encoding we propose a mean-max strategy that applies both mean and max pooling operations over the hidden vectors to capture diverse information of the input. To enable the information to steer the reconstruction process dynamically, the decoder performs attention over the mean-max representation. By training our model on a large collection of unlabelled data, we obtain high-quality representations of sentences. Experimental results on a broad range of 10 transfer tasks demonstrate that our model outperforms the state-of-the-art unsupervised single methods, including the classical skip-thoughts and the advanced skip-thoughts+LN model. Furthermore, compared with the traditional recurrent neural network, our mean-max AAE greatly reduce the training time.</abstract>
<identifier type="citekey">zhang-etal-2018-learning-universal</identifier>
<identifier type="doi">10.18653/v1/D18-1481</identifier>
<location>
<url>https://aclanthology.org/D18-1481/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>4514</start>
<end>4523</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning Universal Sentence Representations with Mean-Max Attention Autoencoder
%A Zhang, Minghua
%A Wu, Yunfang
%A Li, Weikang
%A Li, Wei
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F zhang-etal-2018-learning-universal
%X In order to learn universal sentence representations, previous methods focus on complex recurrent neural networks or supervised learning. In this paper, we propose a mean-max attention autoencoder (mean-max AAE) within the encoder-decoder framework. Our autoencoder rely entirely on the MultiHead self-attention mechanism to reconstruct the input sequence. In the encoding we propose a mean-max strategy that applies both mean and max pooling operations over the hidden vectors to capture diverse information of the input. To enable the information to steer the reconstruction process dynamically, the decoder performs attention over the mean-max representation. By training our model on a large collection of unlabelled data, we obtain high-quality representations of sentences. Experimental results on a broad range of 10 transfer tasks demonstrate that our model outperforms the state-of-the-art unsupervised single methods, including the classical skip-thoughts and the advanced skip-thoughts+LN model. Furthermore, compared with the traditional recurrent neural network, our mean-max AAE greatly reduce the training time.
%R 10.18653/v1/D18-1481
%U https://aclanthology.org/D18-1481/
%U https://doi.org/10.18653/v1/D18-1481
%P 4514-4523
Markdown (Informal)
[Learning Universal Sentence Representations with Mean-Max Attention Autoencoder](https://aclanthology.org/D18-1481/) (Zhang et al., EMNLP 2018)
ACL