@inproceedings{garcia-duran-etal-2018-learning,
title = "Learning Sequence Encoders for Temporal Knowledge Graph Completion",
author = "Garc{\'\i}a-Dur{\'a}n, Alberto and
Duman{\v{c}}i{\'c}, Sebastijan and
Niepert, Mathias",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1516",
doi = "10.18653/v1/D18-1516",
pages = "4816--4821",
abstract = "Research on link prediction in knowledge graphs has mainly focused on static multi-relational data. In this work we consider temporal knowledge graphs where relations between entities may only hold for a time interval or a specific point in time. In line with previous work on static knowledge graphs, we propose to address this problem by learning latent entity and relation type representations. To incorporate temporal information, we utilize recurrent neural networks to learn time-aware representations of relation types which can be used in conjunction with existing latent factorization methods. The proposed approach is shown to be robust to common challenges in real-world KGs: the sparsity and heterogeneity of temporal expressions. Experiments show the benefits of our approach on four temporal KGs. The data sets are available under a permissive BSD-3 license.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="garcia-duran-etal-2018-learning">
<titleInfo>
<title>Learning Sequence Encoders for Temporal Knowledge Graph Completion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">García-Durán</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastijan</namePart>
<namePart type="family">Dumančić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mathias</namePart>
<namePart type="family">Niepert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Research on link prediction in knowledge graphs has mainly focused on static multi-relational data. In this work we consider temporal knowledge graphs where relations between entities may only hold for a time interval or a specific point in time. In line with previous work on static knowledge graphs, we propose to address this problem by learning latent entity and relation type representations. To incorporate temporal information, we utilize recurrent neural networks to learn time-aware representations of relation types which can be used in conjunction with existing latent factorization methods. The proposed approach is shown to be robust to common challenges in real-world KGs: the sparsity and heterogeneity of temporal expressions. Experiments show the benefits of our approach on four temporal KGs. The data sets are available under a permissive BSD-3 license.</abstract>
<identifier type="citekey">garcia-duran-etal-2018-learning</identifier>
<identifier type="doi">10.18653/v1/D18-1516</identifier>
<location>
<url>https://aclanthology.org/D18-1516</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>4816</start>
<end>4821</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning Sequence Encoders for Temporal Knowledge Graph Completion
%A García-Durán, Alberto
%A Dumančić, Sebastijan
%A Niepert, Mathias
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F garcia-duran-etal-2018-learning
%X Research on link prediction in knowledge graphs has mainly focused on static multi-relational data. In this work we consider temporal knowledge graphs where relations between entities may only hold for a time interval or a specific point in time. In line with previous work on static knowledge graphs, we propose to address this problem by learning latent entity and relation type representations. To incorporate temporal information, we utilize recurrent neural networks to learn time-aware representations of relation types which can be used in conjunction with existing latent factorization methods. The proposed approach is shown to be robust to common challenges in real-world KGs: the sparsity and heterogeneity of temporal expressions. Experiments show the benefits of our approach on four temporal KGs. The data sets are available under a permissive BSD-3 license.
%R 10.18653/v1/D18-1516
%U https://aclanthology.org/D18-1516
%U https://doi.org/10.18653/v1/D18-1516
%P 4816-4821
Markdown (Informal)
[Learning Sequence Encoders for Temporal Knowledge Graph Completion](https://aclanthology.org/D18-1516) (García-Durán et al., EMNLP 2018)
ACL