@inproceedings{han-etal-2019-grounding,
title = "Grounding learning of modifier dynamics: An application to color naming",
author = "Han, Xudong and
Schulz, Philip and
Cohn, Trevor",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1158",
doi = "10.18653/v1/D19-1158",
pages = "1488--1493",
abstract = "Grounding is crucial for natural language understanding. An important subtask is to understand modified color expressions, such as {``}light blue{''}. We present a model of color modifiers that, compared with previous additive models in RGB space, learns more complex transformations. In addition, we present a model that operates in the HSV color space. We show that certain adjectives are better modeled in that space. To account for all modifiers, we train a hard ensemble model that selects a color space depending on the modifier-color pair. Experimental results show significant and consistent improvements compared to the state-of-the-art baseline model.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="han-etal-2019-grounding">
<titleInfo>
<title>Grounding learning of modifier dynamics: An application to color naming</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xudong</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philip</namePart>
<namePart type="family">Schulz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Grounding is crucial for natural language understanding. An important subtask is to understand modified color expressions, such as “light blue”. We present a model of color modifiers that, compared with previous additive models in RGB space, learns more complex transformations. In addition, we present a model that operates in the HSV color space. We show that certain adjectives are better modeled in that space. To account for all modifiers, we train a hard ensemble model that selects a color space depending on the modifier-color pair. Experimental results show significant and consistent improvements compared to the state-of-the-art baseline model.</abstract>
<identifier type="citekey">han-etal-2019-grounding</identifier>
<identifier type="doi">10.18653/v1/D19-1158</identifier>
<location>
<url>https://aclanthology.org/D19-1158</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>1488</start>
<end>1493</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Grounding learning of modifier dynamics: An application to color naming
%A Han, Xudong
%A Schulz, Philip
%A Cohn, Trevor
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F han-etal-2019-grounding
%X Grounding is crucial for natural language understanding. An important subtask is to understand modified color expressions, such as “light blue”. We present a model of color modifiers that, compared with previous additive models in RGB space, learns more complex transformations. In addition, we present a model that operates in the HSV color space. We show that certain adjectives are better modeled in that space. To account for all modifiers, we train a hard ensemble model that selects a color space depending on the modifier-color pair. Experimental results show significant and consistent improvements compared to the state-of-the-art baseline model.
%R 10.18653/v1/D19-1158
%U https://aclanthology.org/D19-1158
%U https://doi.org/10.18653/v1/D19-1158
%P 1488-1493
Markdown (Informal)
[Grounding learning of modifier dynamics: An application to color naming](https://aclanthology.org/D19-1158) (Han et al., EMNLP-IJCNLP 2019)
ACL
- Xudong Han, Philip Schulz, and Trevor Cohn. 2019. Grounding learning of modifier dynamics: An application to color naming. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1488–1493, Hong Kong, China. Association for Computational Linguistics.