@inproceedings{huber-carenini-2019-predicting,
title = "Predicting Discourse Structure using Distant Supervision from Sentiment",
author = "Huber, Patrick and
Carenini, Giuseppe",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1235/",
doi = "10.18653/v1/D19-1235",
pages = "2306--2316",
abstract = "Discourse parsing could not yet take full advantage of the neural NLP revolution, mostly due to the lack of annotated datasets. We propose a novel approach that uses distant supervision on an auxiliary task (sentiment classification), to generate abundant data for RST-style discourse structure prediction. Our approach combines a neural variant of multiple-instance learning, using document-level supervision, with an optimal CKY-style tree generation algorithm. In a series of experiments, we train a discourse parser (for only structure prediction) on our automatically generated dataset and compare it with parsers trained on human-annotated corpora (news domain RST-DT and Instructional domain). Results indicate that while our parser does not yet match the performance of a parser trained and tested on the same dataset (intra-domain), it does perform remarkably well on the much more difficult and arguably more useful task of inter-domain discourse structure prediction, where the parser is trained on one domain and tested/applied on another one."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huber-carenini-2019-predicting">
<titleInfo>
<title>Predicting Discourse Structure using Distant Supervision from Sentiment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Huber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Carenini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Discourse parsing could not yet take full advantage of the neural NLP revolution, mostly due to the lack of annotated datasets. We propose a novel approach that uses distant supervision on an auxiliary task (sentiment classification), to generate abundant data for RST-style discourse structure prediction. Our approach combines a neural variant of multiple-instance learning, using document-level supervision, with an optimal CKY-style tree generation algorithm. In a series of experiments, we train a discourse parser (for only structure prediction) on our automatically generated dataset and compare it with parsers trained on human-annotated corpora (news domain RST-DT and Instructional domain). Results indicate that while our parser does not yet match the performance of a parser trained and tested on the same dataset (intra-domain), it does perform remarkably well on the much more difficult and arguably more useful task of inter-domain discourse structure prediction, where the parser is trained on one domain and tested/applied on another one.</abstract>
<identifier type="citekey">huber-carenini-2019-predicting</identifier>
<identifier type="doi">10.18653/v1/D19-1235</identifier>
<location>
<url>https://aclanthology.org/D19-1235/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>2306</start>
<end>2316</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Predicting Discourse Structure using Distant Supervision from Sentiment
%A Huber, Patrick
%A Carenini, Giuseppe
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F huber-carenini-2019-predicting
%X Discourse parsing could not yet take full advantage of the neural NLP revolution, mostly due to the lack of annotated datasets. We propose a novel approach that uses distant supervision on an auxiliary task (sentiment classification), to generate abundant data for RST-style discourse structure prediction. Our approach combines a neural variant of multiple-instance learning, using document-level supervision, with an optimal CKY-style tree generation algorithm. In a series of experiments, we train a discourse parser (for only structure prediction) on our automatically generated dataset and compare it with parsers trained on human-annotated corpora (news domain RST-DT and Instructional domain). Results indicate that while our parser does not yet match the performance of a parser trained and tested on the same dataset (intra-domain), it does perform remarkably well on the much more difficult and arguably more useful task of inter-domain discourse structure prediction, where the parser is trained on one domain and tested/applied on another one.
%R 10.18653/v1/D19-1235
%U https://aclanthology.org/D19-1235/
%U https://doi.org/10.18653/v1/D19-1235
%P 2306-2316
Markdown (Informal)
[Predicting Discourse Structure using Distant Supervision from Sentiment](https://aclanthology.org/D19-1235/) (Huber & Carenini, EMNLP-IJCNLP 2019)
ACL
- Patrick Huber and Giuseppe Carenini. 2019. Predicting Discourse Structure using Distant Supervision from Sentiment. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2306–2316, Hong Kong, China. Association for Computational Linguistics.