@inproceedings{bi-etal-2019-incorporating,
title = "Incorporating External Knowledge into Machine Reading for Generative Question Answering",
author = "Bi, Bin and
Wu, Chen and
Yan, Ming and
Wang, Wei and
Xia, Jiangnan and
Li, Chenliang",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1255",
doi = "10.18653/v1/D19-1255",
pages = "2521--2530",
abstract = "Commonsense and background knowledge is required for a QA model to answer many nontrivial questions. Different from existing work on knowledge-aware QA, we focus on a more challenging task of leveraging external knowledge to generate answers in natural language for a given question with context. In this paper, we propose a new neural model, Knowledge-Enriched Answer Generator (KEAG), which is able to compose a natural answer by exploiting and aggregating evidence from all four information sources available: question, passage, vocabulary and knowledge. During the process of answer generation, KEAG adaptively determines when to utilize symbolic knowledge and which fact from the knowledge is useful. This allows the model to exploit external knowledge that is not explicitly stated in the given text, but that is relevant for generating an answer. The empirical study on public benchmark of answer generation demonstrates that KEAG improves answer quality over models without knowledge and existing knowledge-aware models, confirming its effectiveness in leveraging knowledge.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bi-etal-2019-incorporating">
<titleInfo>
<title>Incorporating External Knowledge into Machine Reading for Generative Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Bi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ming</namePart>
<namePart type="family">Yan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiangnan</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenliang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Commonsense and background knowledge is required for a QA model to answer many nontrivial questions. Different from existing work on knowledge-aware QA, we focus on a more challenging task of leveraging external knowledge to generate answers in natural language for a given question with context. In this paper, we propose a new neural model, Knowledge-Enriched Answer Generator (KEAG), which is able to compose a natural answer by exploiting and aggregating evidence from all four information sources available: question, passage, vocabulary and knowledge. During the process of answer generation, KEAG adaptively determines when to utilize symbolic knowledge and which fact from the knowledge is useful. This allows the model to exploit external knowledge that is not explicitly stated in the given text, but that is relevant for generating an answer. The empirical study on public benchmark of answer generation demonstrates that KEAG improves answer quality over models without knowledge and existing knowledge-aware models, confirming its effectiveness in leveraging knowledge.</abstract>
<identifier type="citekey">bi-etal-2019-incorporating</identifier>
<identifier type="doi">10.18653/v1/D19-1255</identifier>
<location>
<url>https://aclanthology.org/D19-1255</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>2521</start>
<end>2530</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Incorporating External Knowledge into Machine Reading for Generative Question Answering
%A Bi, Bin
%A Wu, Chen
%A Yan, Ming
%A Wang, Wei
%A Xia, Jiangnan
%A Li, Chenliang
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F bi-etal-2019-incorporating
%X Commonsense and background knowledge is required for a QA model to answer many nontrivial questions. Different from existing work on knowledge-aware QA, we focus on a more challenging task of leveraging external knowledge to generate answers in natural language for a given question with context. In this paper, we propose a new neural model, Knowledge-Enriched Answer Generator (KEAG), which is able to compose a natural answer by exploiting and aggregating evidence from all four information sources available: question, passage, vocabulary and knowledge. During the process of answer generation, KEAG adaptively determines when to utilize symbolic knowledge and which fact from the knowledge is useful. This allows the model to exploit external knowledge that is not explicitly stated in the given text, but that is relevant for generating an answer. The empirical study on public benchmark of answer generation demonstrates that KEAG improves answer quality over models without knowledge and existing knowledge-aware models, confirming its effectiveness in leveraging knowledge.
%R 10.18653/v1/D19-1255
%U https://aclanthology.org/D19-1255
%U https://doi.org/10.18653/v1/D19-1255
%P 2521-2530
Markdown (Informal)
[Incorporating External Knowledge into Machine Reading for Generative Question Answering](https://aclanthology.org/D19-1255) (Bi et al., EMNLP-IJCNLP 2019)
ACL