@inproceedings{liang-etal-2019-asynchronous,
title = "Asynchronous Deep Interaction Network for Natural Language Inference",
author = "Liang, Di and
Zhang, Fubao and
Zhang, Qi and
Huang, Xuanjing",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1271/",
doi = "10.18653/v1/D19-1271",
pages = "2692--2700",
abstract = "Natural language inference aims to predict whether a premise sentence can infer another hypothesis sentence. Existing methods typically have framed the reasoning problem as a semantic matching task. The both sentences are encoded and interacted symmetrically and in parallel. However, in the process of reasoning, the role of the two sentences is obviously different, and the sentence pairs for NLI are asymmetrical corpora. In this paper, we propose an asynchronous deep interaction network (ADIN) to complete the task. ADIN is a neural network structure stacked with multiple inference sub-layers, and each sub-layer consists of two local inference modules in an asymmetrical manner. Different from previous methods, this model deconstructs the reasoning process and implements the asynchronous and multi-step reasoning. Experiment results show that ADIN achieves competitive performance and outperforms strong baselines on three popular benchmarks: SNLI, MultiNLI, and SciTail."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liang-etal-2019-asynchronous">
<titleInfo>
<title>Asynchronous Deep Interaction Network for Natural Language Inference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Di</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fubao</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Natural language inference aims to predict whether a premise sentence can infer another hypothesis sentence. Existing methods typically have framed the reasoning problem as a semantic matching task. The both sentences are encoded and interacted symmetrically and in parallel. However, in the process of reasoning, the role of the two sentences is obviously different, and the sentence pairs for NLI are asymmetrical corpora. In this paper, we propose an asynchronous deep interaction network (ADIN) to complete the task. ADIN is a neural network structure stacked with multiple inference sub-layers, and each sub-layer consists of two local inference modules in an asymmetrical manner. Different from previous methods, this model deconstructs the reasoning process and implements the asynchronous and multi-step reasoning. Experiment results show that ADIN achieves competitive performance and outperforms strong baselines on three popular benchmarks: SNLI, MultiNLI, and SciTail.</abstract>
<identifier type="citekey">liang-etal-2019-asynchronous</identifier>
<identifier type="doi">10.18653/v1/D19-1271</identifier>
<location>
<url>https://aclanthology.org/D19-1271/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>2692</start>
<end>2700</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Asynchronous Deep Interaction Network for Natural Language Inference
%A Liang, Di
%A Zhang, Fubao
%A Zhang, Qi
%A Huang, Xuanjing
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F liang-etal-2019-asynchronous
%X Natural language inference aims to predict whether a premise sentence can infer another hypothesis sentence. Existing methods typically have framed the reasoning problem as a semantic matching task. The both sentences are encoded and interacted symmetrically and in parallel. However, in the process of reasoning, the role of the two sentences is obviously different, and the sentence pairs for NLI are asymmetrical corpora. In this paper, we propose an asynchronous deep interaction network (ADIN) to complete the task. ADIN is a neural network structure stacked with multiple inference sub-layers, and each sub-layer consists of two local inference modules in an asymmetrical manner. Different from previous methods, this model deconstructs the reasoning process and implements the asynchronous and multi-step reasoning. Experiment results show that ADIN achieves competitive performance and outperforms strong baselines on three popular benchmarks: SNLI, MultiNLI, and SciTail.
%R 10.18653/v1/D19-1271
%U https://aclanthology.org/D19-1271/
%U https://doi.org/10.18653/v1/D19-1271
%P 2692-2700
Markdown (Informal)
[Asynchronous Deep Interaction Network for Natural Language Inference](https://aclanthology.org/D19-1271/) (Liang et al., EMNLP-IJCNLP 2019)
ACL
- Di Liang, Fubao Zhang, Qi Zhang, and Xuanjing Huang. 2019. Asynchronous Deep Interaction Network for Natural Language Inference. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2692–2700, Hong Kong, China. Association for Computational Linguistics.