@inproceedings{almarwani-etal-2019-efficient,
title = "Efficient Sentence Embedding using Discrete Cosine Transform",
author = "Almarwani, Nada and
Aldarmaki, Hanan and
Diab, Mona",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1380/",
doi = "10.18653/v1/D19-1380",
pages = "3672--3678",
abstract = "Vector averaging remains one of the most popular sentence embedding methods in spite of its obvious disregard for syntactic structure. While more complex sequential or convolutional networks potentially yield superior classification performance, the improvements in classification accuracy are typically mediocre compared to the simple vector averaging. As an efficient alternative, we propose the use of discrete cosine transform (DCT) to compress word sequences in an order-preserving manner. The lower order DCT coefficients represent the overall feature patterns in sentences, which results in suitable embeddings for tasks that could benefit from syntactic features. Our results in semantic probing tasks demonstrate that DCT embeddings indeed preserve more syntactic information compared with vector averaging. With practically equivalent complexity, the model yields better overall performance in downstream classification tasks that correlate with syntactic features, which illustrates the capacity of DCT to preserve word order information."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="almarwani-etal-2019-efficient">
<titleInfo>
<title>Efficient Sentence Embedding using Discrete Cosine Transform</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nada</namePart>
<namePart type="family">Almarwani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hanan</namePart>
<namePart type="family">Aldarmaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mona</namePart>
<namePart type="family">Diab</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Vector averaging remains one of the most popular sentence embedding methods in spite of its obvious disregard for syntactic structure. While more complex sequential or convolutional networks potentially yield superior classification performance, the improvements in classification accuracy are typically mediocre compared to the simple vector averaging. As an efficient alternative, we propose the use of discrete cosine transform (DCT) to compress word sequences in an order-preserving manner. The lower order DCT coefficients represent the overall feature patterns in sentences, which results in suitable embeddings for tasks that could benefit from syntactic features. Our results in semantic probing tasks demonstrate that DCT embeddings indeed preserve more syntactic information compared with vector averaging. With practically equivalent complexity, the model yields better overall performance in downstream classification tasks that correlate with syntactic features, which illustrates the capacity of DCT to preserve word order information.</abstract>
<identifier type="citekey">almarwani-etal-2019-efficient</identifier>
<identifier type="doi">10.18653/v1/D19-1380</identifier>
<location>
<url>https://aclanthology.org/D19-1380/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>3672</start>
<end>3678</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Efficient Sentence Embedding using Discrete Cosine Transform
%A Almarwani, Nada
%A Aldarmaki, Hanan
%A Diab, Mona
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F almarwani-etal-2019-efficient
%X Vector averaging remains one of the most popular sentence embedding methods in spite of its obvious disregard for syntactic structure. While more complex sequential or convolutional networks potentially yield superior classification performance, the improvements in classification accuracy are typically mediocre compared to the simple vector averaging. As an efficient alternative, we propose the use of discrete cosine transform (DCT) to compress word sequences in an order-preserving manner. The lower order DCT coefficients represent the overall feature patterns in sentences, which results in suitable embeddings for tasks that could benefit from syntactic features. Our results in semantic probing tasks demonstrate that DCT embeddings indeed preserve more syntactic information compared with vector averaging. With practically equivalent complexity, the model yields better overall performance in downstream classification tasks that correlate with syntactic features, which illustrates the capacity of DCT to preserve word order information.
%R 10.18653/v1/D19-1380
%U https://aclanthology.org/D19-1380/
%U https://doi.org/10.18653/v1/D19-1380
%P 3672-3678
Markdown (Informal)
[Efficient Sentence Embedding using Discrete Cosine Transform](https://aclanthology.org/D19-1380/) (Almarwani et al., EMNLP-IJCNLP 2019)
ACL
- Nada Almarwani, Hanan Aldarmaki, and Mona Diab. 2019. Efficient Sentence Embedding using Discrete Cosine Transform. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3672–3678, Hong Kong, China. Association for Computational Linguistics.