@inproceedings{sinha-etal-2019-clutrr,
title = "{CLUTRR}: A Diagnostic Benchmark for Inductive Reasoning from Text",
author = "Sinha, Koustuv and
Sodhani, Shagun and
Dong, Jin and
Pineau, Joelle and
Hamilton, William L.",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1458/",
doi = "10.18653/v1/D19-1458",
pages = "4506--4515",
abstract = "The recent success of natural language understanding (NLU) systems has been troubled by results highlighting the failure of these models to generalize in a systematic and robust way. In this work, we introduce a diagnostic benchmark suite, named CLUTRR, to clarify some key issues related to the robustness and systematicity of NLU systems. Motivated by the classic work on inductive logic programming, CLUTRR requires that an NLU system infer kinship relations between characters in short stories. Successful performance on this task requires both extracting relationships between entities, as well as inferring the logical rules governing these relationships. CLUTRR allows us to precisely measure a model`s ability for systematic generalization by evaluating on held-out combinations of logical rules, and allows us to evaluate a model`s robustness by adding curated noise facts. Our empirical results highlight a substantial performance gap between state-of-the-art NLU models (e.g., BERT and MAC) and a graph neural network model that works directly with symbolic inputs{---}with the graph-based model exhibiting both stronger generalization and greater robustness."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sinha-etal-2019-clutrr">
<titleInfo>
<title>CLUTRR: A Diagnostic Benchmark for Inductive Reasoning from Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Koustuv</namePart>
<namePart type="family">Sinha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shagun</namePart>
<namePart type="family">Sodhani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jin</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joelle</namePart>
<namePart type="family">Pineau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="given">L</namePart>
<namePart type="family">Hamilton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The recent success of natural language understanding (NLU) systems has been troubled by results highlighting the failure of these models to generalize in a systematic and robust way. In this work, we introduce a diagnostic benchmark suite, named CLUTRR, to clarify some key issues related to the robustness and systematicity of NLU systems. Motivated by the classic work on inductive logic programming, CLUTRR requires that an NLU system infer kinship relations between characters in short stories. Successful performance on this task requires both extracting relationships between entities, as well as inferring the logical rules governing these relationships. CLUTRR allows us to precisely measure a model‘s ability for systematic generalization by evaluating on held-out combinations of logical rules, and allows us to evaluate a model‘s robustness by adding curated noise facts. Our empirical results highlight a substantial performance gap between state-of-the-art NLU models (e.g., BERT and MAC) and a graph neural network model that works directly with symbolic inputs—with the graph-based model exhibiting both stronger generalization and greater robustness.</abstract>
<identifier type="citekey">sinha-etal-2019-clutrr</identifier>
<identifier type="doi">10.18653/v1/D19-1458</identifier>
<location>
<url>https://aclanthology.org/D19-1458/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>4506</start>
<end>4515</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CLUTRR: A Diagnostic Benchmark for Inductive Reasoning from Text
%A Sinha, Koustuv
%A Sodhani, Shagun
%A Dong, Jin
%A Pineau, Joelle
%A Hamilton, William L.
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F sinha-etal-2019-clutrr
%X The recent success of natural language understanding (NLU) systems has been troubled by results highlighting the failure of these models to generalize in a systematic and robust way. In this work, we introduce a diagnostic benchmark suite, named CLUTRR, to clarify some key issues related to the robustness and systematicity of NLU systems. Motivated by the classic work on inductive logic programming, CLUTRR requires that an NLU system infer kinship relations between characters in short stories. Successful performance on this task requires both extracting relationships between entities, as well as inferring the logical rules governing these relationships. CLUTRR allows us to precisely measure a model‘s ability for systematic generalization by evaluating on held-out combinations of logical rules, and allows us to evaluate a model‘s robustness by adding curated noise facts. Our empirical results highlight a substantial performance gap between state-of-the-art NLU models (e.g., BERT and MAC) and a graph neural network model that works directly with symbolic inputs—with the graph-based model exhibiting both stronger generalization and greater robustness.
%R 10.18653/v1/D19-1458
%U https://aclanthology.org/D19-1458/
%U https://doi.org/10.18653/v1/D19-1458
%P 4506-4515
Markdown (Informal)
[CLUTRR: A Diagnostic Benchmark for Inductive Reasoning from Text](https://aclanthology.org/D19-1458/) (Sinha et al., EMNLP-IJCNLP 2019)
ACL
- Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. 2019. CLUTRR: A Diagnostic Benchmark for Inductive Reasoning from Text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4506–4515, Hong Kong, China. Association for Computational Linguistics.