@inproceedings{mishra-etal-2019-modular,
title = "A Modular Architecture for Unsupervised Sarcasm Generation",
author = "Mishra, Abhijit and
Tater, Tarun and
Sankaranarayanan, Karthik",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1636/",
doi = "10.18653/v1/D19-1636",
pages = "6144--6154",
abstract = "In this paper, we propose a novel framework for sarcasm generation; the system takes a literal negative opinion as input and translates it into a sarcastic version. Our framework does not require any paired data for training. Sarcasm emanates from context-incongruity which becomes apparent as the sentence unfolds. Our framework introduces incongruity into the literal input version through modules that: (a) filter factual content from the input opinion, (b) retrieve incongruous phrases related to the filtered facts and (c) synthesize sarcastic text from the incongruous filtered and incongruous phrases. The framework employs reinforced neural sequence to sequence learning and information retrieval and is trained only using unlabeled non-sarcastic and sarcastic opinions. Since no labeled dataset exists for such a task, for evaluation, we manually prepare a benchmark dataset containing literal opinions and their sarcastic paraphrases. Qualitative and quantitative performance analyses on the data reveal our system`s superiority over baselines built using known unsupervised statistical and neural machine translation and style transfer techniques."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mishra-etal-2019-modular">
<titleInfo>
<title>A Modular Architecture for Unsupervised Sarcasm Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abhijit</namePart>
<namePart type="family">Mishra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tarun</namePart>
<namePart type="family">Tater</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karthik</namePart>
<namePart type="family">Sankaranarayanan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we propose a novel framework for sarcasm generation; the system takes a literal negative opinion as input and translates it into a sarcastic version. Our framework does not require any paired data for training. Sarcasm emanates from context-incongruity which becomes apparent as the sentence unfolds. Our framework introduces incongruity into the literal input version through modules that: (a) filter factual content from the input opinion, (b) retrieve incongruous phrases related to the filtered facts and (c) synthesize sarcastic text from the incongruous filtered and incongruous phrases. The framework employs reinforced neural sequence to sequence learning and information retrieval and is trained only using unlabeled non-sarcastic and sarcastic opinions. Since no labeled dataset exists for such a task, for evaluation, we manually prepare a benchmark dataset containing literal opinions and their sarcastic paraphrases. Qualitative and quantitative performance analyses on the data reveal our system‘s superiority over baselines built using known unsupervised statistical and neural machine translation and style transfer techniques.</abstract>
<identifier type="citekey">mishra-etal-2019-modular</identifier>
<identifier type="doi">10.18653/v1/D19-1636</identifier>
<location>
<url>https://aclanthology.org/D19-1636/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>6144</start>
<end>6154</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Modular Architecture for Unsupervised Sarcasm Generation
%A Mishra, Abhijit
%A Tater, Tarun
%A Sankaranarayanan, Karthik
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F mishra-etal-2019-modular
%X In this paper, we propose a novel framework for sarcasm generation; the system takes a literal negative opinion as input and translates it into a sarcastic version. Our framework does not require any paired data for training. Sarcasm emanates from context-incongruity which becomes apparent as the sentence unfolds. Our framework introduces incongruity into the literal input version through modules that: (a) filter factual content from the input opinion, (b) retrieve incongruous phrases related to the filtered facts and (c) synthesize sarcastic text from the incongruous filtered and incongruous phrases. The framework employs reinforced neural sequence to sequence learning and information retrieval and is trained only using unlabeled non-sarcastic and sarcastic opinions. Since no labeled dataset exists for such a task, for evaluation, we manually prepare a benchmark dataset containing literal opinions and their sarcastic paraphrases. Qualitative and quantitative performance analyses on the data reveal our system‘s superiority over baselines built using known unsupervised statistical and neural machine translation and style transfer techniques.
%R 10.18653/v1/D19-1636
%U https://aclanthology.org/D19-1636/
%U https://doi.org/10.18653/v1/D19-1636
%P 6144-6154
Markdown (Informal)
[A Modular Architecture for Unsupervised Sarcasm Generation](https://aclanthology.org/D19-1636/) (Mishra et al., EMNLP-IJCNLP 2019)
ACL
- Abhijit Mishra, Tarun Tater, and Karthik Sankaranarayanan. 2019. A Modular Architecture for Unsupervised Sarcasm Generation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6144–6154, Hong Kong, China. Association for Computational Linguistics.