@inproceedings{muller-etal-2019-enhancing,
title = "Enhancing {BERT} for Lexical Normalization",
author = "Muller, Benjamin and
Sagot, Benoit and
Seddah, Djam{\'e}",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5539/",
doi = "10.18653/v1/D19-5539",
pages = "297--306",
abstract = "Language model-based pre-trained representations have become ubiquitous in natural language processing. They have been shown to significantly improve the performance of neural models on a great variety of tasks. However, it remains unclear how useful those general models can be in handling non-canonical text. In this article, focusing on User Generated Content (UGC), we study the ability of BERT to perform lexical normalisation. Our contribution is simple: by framing lexical normalisation as a token prediction task, by enhancing its architecture and by carefully fine-tuning it, we show that BERT can be a competitive lexical normalisation model without the need of any UGC resources aside from 3,000 training sentences. To the best of our knowledge, it is the first work done in adapting and analysing the ability of this model to handle noisy UGC data."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="muller-etal-2019-enhancing">
<titleInfo>
<title>Enhancing BERT for Lexical Normalization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Muller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benoit</namePart>
<namePart type="family">Sagot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Djamé</namePart>
<namePart type="family">Seddah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Language model-based pre-trained representations have become ubiquitous in natural language processing. They have been shown to significantly improve the performance of neural models on a great variety of tasks. However, it remains unclear how useful those general models can be in handling non-canonical text. In this article, focusing on User Generated Content (UGC), we study the ability of BERT to perform lexical normalisation. Our contribution is simple: by framing lexical normalisation as a token prediction task, by enhancing its architecture and by carefully fine-tuning it, we show that BERT can be a competitive lexical normalisation model without the need of any UGC resources aside from 3,000 training sentences. To the best of our knowledge, it is the first work done in adapting and analysing the ability of this model to handle noisy UGC data.</abstract>
<identifier type="citekey">muller-etal-2019-enhancing</identifier>
<identifier type="doi">10.18653/v1/D19-5539</identifier>
<location>
<url>https://aclanthology.org/D19-5539/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>297</start>
<end>306</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhancing BERT for Lexical Normalization
%A Muller, Benjamin
%A Sagot, Benoit
%A Seddah, Djamé
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F muller-etal-2019-enhancing
%X Language model-based pre-trained representations have become ubiquitous in natural language processing. They have been shown to significantly improve the performance of neural models on a great variety of tasks. However, it remains unclear how useful those general models can be in handling non-canonical text. In this article, focusing on User Generated Content (UGC), we study the ability of BERT to perform lexical normalisation. Our contribution is simple: by framing lexical normalisation as a token prediction task, by enhancing its architecture and by carefully fine-tuning it, we show that BERT can be a competitive lexical normalisation model without the need of any UGC resources aside from 3,000 training sentences. To the best of our knowledge, it is the first work done in adapting and analysing the ability of this model to handle noisy UGC data.
%R 10.18653/v1/D19-5539
%U https://aclanthology.org/D19-5539/
%U https://doi.org/10.18653/v1/D19-5539
%P 297-306
Markdown (Informal)
[Enhancing BERT for Lexical Normalization](https://aclanthology.org/D19-5539/) (Muller et al., WNUT 2019)
ACL
- Benjamin Muller, Benoit Sagot, and Djamé Seddah. 2019. Enhancing BERT for Lexical Normalization. In Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019), pages 297–306, Hong Kong, China. Association for Computational Linguistics.