@inproceedings{malandrakis-etal-2019-controlled,
    title = "Controlled Text Generation for Data Augmentation in Intelligent Artificial Agents",
    author = "Malandrakis, Nikolaos  and
      Shen, Minmin  and
      Goyal, Anuj  and
      Gao, Shuyang  and
      Sethi, Abhishek  and
      Metallinou, Angeliki",
    editor = "Birch, Alexandra  and
      Finch, Andrew  and
      Hayashi, Hiroaki  and
      Konstas, Ioannis  and
      Luong, Thang  and
      Neubig, Graham  and
      Oda, Yusuke  and
      Sudoh, Katsuhito",
    booktitle = "Proceedings of the 3rd Workshop on Neural Generation and Translation",
    month = nov,
    year = "2019",
    address = "Hong Kong",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D19-5609/",
    doi = "10.18653/v1/D19-5609",
    pages = "90--98",
    abstract = "Data availability is a bottleneck during early stages of development of new capabilities for intelligent artificial agents. We investigate the use of text generation techniques to augment the training data of a popular commercial artificial agent across categories of functionality, with the goal of faster development of new functionality. We explore a variety of encoder-decoder generative models for synthetic training data generation and propose using conditional variational auto-encoders. Our approach requires only direct optimization, works well with limited data and significantly outperforms the previous controlled text generation techniques. Further, the generated data are used as additional training samples in an extrinsic intent classification task, leading to improved performance by up to 5{\%} absolute f-score in low-resource cases, validating the usefulness of our approach."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="malandrakis-etal-2019-controlled">
    <titleInfo>
        <title>Controlled Text Generation for Data Augmentation in Intelligent Artificial Agents</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Nikolaos</namePart>
        <namePart type="family">Malandrakis</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Minmin</namePart>
        <namePart type="family">Shen</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Anuj</namePart>
        <namePart type="family">Goyal</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Shuyang</namePart>
        <namePart type="family">Gao</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Abhishek</namePart>
        <namePart type="family">Sethi</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Angeliki</namePart>
        <namePart type="family">Metallinou</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 3rd Workshop on Neural Generation and Translation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Alexandra</namePart>
            <namePart type="family">Birch</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Andrew</namePart>
            <namePart type="family">Finch</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Hiroaki</namePart>
            <namePart type="family">Hayashi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ioannis</namePart>
            <namePart type="family">Konstas</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Thang</namePart>
            <namePart type="family">Luong</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Graham</namePart>
            <namePart type="family">Neubig</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Yusuke</namePart>
            <namePart type="family">Oda</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Katsuhito</namePart>
            <namePart type="family">Sudoh</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Hong Kong</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Data availability is a bottleneck during early stages of development of new capabilities for intelligent artificial agents. We investigate the use of text generation techniques to augment the training data of a popular commercial artificial agent across categories of functionality, with the goal of faster development of new functionality. We explore a variety of encoder-decoder generative models for synthetic training data generation and propose using conditional variational auto-encoders. Our approach requires only direct optimization, works well with limited data and significantly outperforms the previous controlled text generation techniques. Further, the generated data are used as additional training samples in an extrinsic intent classification task, leading to improved performance by up to 5% absolute f-score in low-resource cases, validating the usefulness of our approach.</abstract>
    <identifier type="citekey">malandrakis-etal-2019-controlled</identifier>
    <identifier type="doi">10.18653/v1/D19-5609</identifier>
    <location>
        <url>https://aclanthology.org/D19-5609/</url>
    </location>
    <part>
        <date>2019-11</date>
        <extent unit="page">
            <start>90</start>
            <end>98</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Controlled Text Generation for Data Augmentation in Intelligent Artificial Agents
%A Malandrakis, Nikolaos
%A Shen, Minmin
%A Goyal, Anuj
%A Gao, Shuyang
%A Sethi, Abhishek
%A Metallinou, Angeliki
%Y Birch, Alexandra
%Y Finch, Andrew
%Y Hayashi, Hiroaki
%Y Konstas, Ioannis
%Y Luong, Thang
%Y Neubig, Graham
%Y Oda, Yusuke
%Y Sudoh, Katsuhito
%S Proceedings of the 3rd Workshop on Neural Generation and Translation
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong
%F malandrakis-etal-2019-controlled
%X Data availability is a bottleneck during early stages of development of new capabilities for intelligent artificial agents. We investigate the use of text generation techniques to augment the training data of a popular commercial artificial agent across categories of functionality, with the goal of faster development of new functionality. We explore a variety of encoder-decoder generative models for synthetic training data generation and propose using conditional variational auto-encoders. Our approach requires only direct optimization, works well with limited data and significantly outperforms the previous controlled text generation techniques. Further, the generated data are used as additional training samples in an extrinsic intent classification task, leading to improved performance by up to 5% absolute f-score in low-resource cases, validating the usefulness of our approach.
%R 10.18653/v1/D19-5609
%U https://aclanthology.org/D19-5609/
%U https://doi.org/10.18653/v1/D19-5609
%P 90-98
Markdown (Informal)
[Controlled Text Generation for Data Augmentation in Intelligent Artificial Agents](https://aclanthology.org/D19-5609/) (Malandrakis et al., NGT 2019)
ACL