@inproceedings{joshi-etal-2019-reevaluating,
title = "Reevaluating Argument Component Extraction in Low Resource Settings",
author = "Joshi, Anirudh and
Baldwin, Timothy and
Sinnott, Richard and
Paris, Cecile",
editor = "Cherry, Colin and
Durrett, Greg and
Foster, George and
Haffari, Reza and
Khadivi, Shahram and
Peng, Nanyun and
Ren, Xiang and
Swayamdipta, Swabha",
booktitle = "Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-6124/",
doi = "10.18653/v1/D19-6124",
pages = "219--224",
abstract = "Argument component extraction is a challenging and complex high-level semantic extraction task. As such, it is both expensive to annotate (meaning training data is limited and low-resource by nature), and hard for current-generation deep learning methods to model. In this paper, we reevaluate the performance of state-of-the-art approaches in both single- and multi-task learning settings using combinations of character-level, GloVe, ELMo, and BERT encodings using standard BiLSTM-CRF encoders. We use evaluation metrics that are more consistent with evaluation practice in named entity recognition to understand how well current baselines address this challenge and compare their performance to lower-level semantic tasks such as CoNLL named entity recognition. We find that performance utilizing various pre-trained representations and training methodologies often leaves a lot to be desired as it currently stands, and suggest future pathways for improvement."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="joshi-etal-2019-reevaluating">
<titleInfo>
<title>Reevaluating Argument Component Extraction in Low Resource Settings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anirudh</namePart>
<namePart type="family">Joshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="family">Sinnott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cecile</namePart>
<namePart type="family">Paris</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Colin</namePart>
<namePart type="family">Cherry</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Durrett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">George</namePart>
<namePart type="family">Foster</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reza</namePart>
<namePart type="family">Haffari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shahram</namePart>
<namePart type="family">Khadivi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nanyun</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Ren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Swabha</namePart>
<namePart type="family">Swayamdipta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Argument component extraction is a challenging and complex high-level semantic extraction task. As such, it is both expensive to annotate (meaning training data is limited and low-resource by nature), and hard for current-generation deep learning methods to model. In this paper, we reevaluate the performance of state-of-the-art approaches in both single- and multi-task learning settings using combinations of character-level, GloVe, ELMo, and BERT encodings using standard BiLSTM-CRF encoders. We use evaluation metrics that are more consistent with evaluation practice in named entity recognition to understand how well current baselines address this challenge and compare their performance to lower-level semantic tasks such as CoNLL named entity recognition. We find that performance utilizing various pre-trained representations and training methodologies often leaves a lot to be desired as it currently stands, and suggest future pathways for improvement.</abstract>
<identifier type="citekey">joshi-etal-2019-reevaluating</identifier>
<identifier type="doi">10.18653/v1/D19-6124</identifier>
<location>
<url>https://aclanthology.org/D19-6124/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>219</start>
<end>224</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Reevaluating Argument Component Extraction in Low Resource Settings
%A Joshi, Anirudh
%A Baldwin, Timothy
%A Sinnott, Richard
%A Paris, Cecile
%Y Cherry, Colin
%Y Durrett, Greg
%Y Foster, George
%Y Haffari, Reza
%Y Khadivi, Shahram
%Y Peng, Nanyun
%Y Ren, Xiang
%Y Swayamdipta, Swabha
%S Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F joshi-etal-2019-reevaluating
%X Argument component extraction is a challenging and complex high-level semantic extraction task. As such, it is both expensive to annotate (meaning training data is limited and low-resource by nature), and hard for current-generation deep learning methods to model. In this paper, we reevaluate the performance of state-of-the-art approaches in both single- and multi-task learning settings using combinations of character-level, GloVe, ELMo, and BERT encodings using standard BiLSTM-CRF encoders. We use evaluation metrics that are more consistent with evaluation practice in named entity recognition to understand how well current baselines address this challenge and compare their performance to lower-level semantic tasks such as CoNLL named entity recognition. We find that performance utilizing various pre-trained representations and training methodologies often leaves a lot to be desired as it currently stands, and suggest future pathways for improvement.
%R 10.18653/v1/D19-6124
%U https://aclanthology.org/D19-6124/
%U https://doi.org/10.18653/v1/D19-6124
%P 219-224
Markdown (Informal)
[Reevaluating Argument Component Extraction in Low Resource Settings](https://aclanthology.org/D19-6124/) (Joshi et al., 2019)
ACL