@inproceedings{nikolentzos-etal-2017-multivariate,
title = "Multivariate {G}aussian Document Representation from Word Embeddings for Text Categorization",
author = "Nikolentzos, Giannis and
Meladianos, Polykarpos and
Rousseau, Fran{\c{c}}ois and
Stavrakas, Yannis and
Vazirgiannis, Michalis",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-2072",
pages = "450--455",
abstract = "Recently, there has been a lot of activity in learning distributed representations of words in vector spaces. Although there are models capable of learning high-quality distributed representations of words, how to generate vector representations of the same quality for phrases or documents still remains a challenge. In this paper, we propose to model each document as a multivariate Gaussian distribution based on the distributed representations of its words. We then measure the similarity between two documents based on the similarity of their distributions. Experiments on eight standard text categorization datasets demonstrate the effectiveness of the proposed approach in comparison with state-of-the-art methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nikolentzos-etal-2017-multivariate">
<titleInfo>
<title>Multivariate Gaussian Document Representation from Word Embeddings for Text Categorization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Giannis</namePart>
<namePart type="family">Nikolentzos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Polykarpos</namePart>
<namePart type="family">Meladianos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">François</namePart>
<namePart type="family">Rousseau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yannis</namePart>
<namePart type="family">Stavrakas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michalis</namePart>
<namePart type="family">Vazirgiannis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recently, there has been a lot of activity in learning distributed representations of words in vector spaces. Although there are models capable of learning high-quality distributed representations of words, how to generate vector representations of the same quality for phrases or documents still remains a challenge. In this paper, we propose to model each document as a multivariate Gaussian distribution based on the distributed representations of its words. We then measure the similarity between two documents based on the similarity of their distributions. Experiments on eight standard text categorization datasets demonstrate the effectiveness of the proposed approach in comparison with state-of-the-art methods.</abstract>
<identifier type="citekey">nikolentzos-etal-2017-multivariate</identifier>
<location>
<url>https://aclanthology.org/E17-2072</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>450</start>
<end>455</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multivariate Gaussian Document Representation from Word Embeddings for Text Categorization
%A Nikolentzos, Giannis
%A Meladianos, Polykarpos
%A Rousseau, François
%A Stavrakas, Yannis
%A Vazirgiannis, Michalis
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F nikolentzos-etal-2017-multivariate
%X Recently, there has been a lot of activity in learning distributed representations of words in vector spaces. Although there are models capable of learning high-quality distributed representations of words, how to generate vector representations of the same quality for phrases or documents still remains a challenge. In this paper, we propose to model each document as a multivariate Gaussian distribution based on the distributed representations of its words. We then measure the similarity between two documents based on the similarity of their distributions. Experiments on eight standard text categorization datasets demonstrate the effectiveness of the proposed approach in comparison with state-of-the-art methods.
%U https://aclanthology.org/E17-2072
%P 450-455
Markdown (Informal)
[Multivariate Gaussian Document Representation from Word Embeddings for Text Categorization](https://aclanthology.org/E17-2072) (Nikolentzos et al., EACL 2017)
ACL