@inproceedings{chalaguine-schulz-2017-assessing,
title = "Assessing Convincingness of Arguments in Online Debates with Limited Number of Features",
author = "Chalaguine, Lisa Andreevna and
Schulz, Claudia",
editor = "Kunneman, Florian and
I{\~n}urrieta, Uxoa and
Camilleri, John J. and
Ardanuy, Mariona Coll",
booktitle = "Proceedings of the Student Research Workshop at the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-4008/",
pages = "75--83",
abstract = "We propose a new method in the field of argument analysis in social media to determining convincingness of arguments in online debates, following previous research by Habernal and Gurevych (2016). Rather than using argument specific feature values, we measure feature values relative to the average value in the debate, allowing us to determine argument convincingness with fewer features (between 5 and 35) than normally used for natural language processing tasks. We use a simple forward-feeding neural network for this task and achieve an accuracy of 0.77 which is comparable to the accuracy obtained using 64k features and a support vector machine by Habernal and Gurevych."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chalaguine-schulz-2017-assessing">
<titleInfo>
<title>Assessing Convincingness of Arguments in Online Debates with Limited Number of Features</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lisa</namePart>
<namePart type="given">Andreevna</namePart>
<namePart type="family">Chalaguine</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Schulz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Student Research Workshop at the 15th Conference of the European Chapter of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Florian</namePart>
<namePart type="family">Kunneman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Uxoa</namePart>
<namePart type="family">Iñurrieta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Camilleri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mariona</namePart>
<namePart type="given">Coll</namePart>
<namePart type="family">Ardanuy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a new method in the field of argument analysis in social media to determining convincingness of arguments in online debates, following previous research by Habernal and Gurevych (2016). Rather than using argument specific feature values, we measure feature values relative to the average value in the debate, allowing us to determine argument convincingness with fewer features (between 5 and 35) than normally used for natural language processing tasks. We use a simple forward-feeding neural network for this task and achieve an accuracy of 0.77 which is comparable to the accuracy obtained using 64k features and a support vector machine by Habernal and Gurevych.</abstract>
<identifier type="citekey">chalaguine-schulz-2017-assessing</identifier>
<location>
<url>https://aclanthology.org/E17-4008/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>75</start>
<end>83</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Assessing Convincingness of Arguments in Online Debates with Limited Number of Features
%A Chalaguine, Lisa Andreevna
%A Schulz, Claudia
%Y Kunneman, Florian
%Y Iñurrieta, Uxoa
%Y Camilleri, John J.
%Y Ardanuy, Mariona Coll
%S Proceedings of the Student Research Workshop at the 15th Conference of the European Chapter of the Association for Computational Linguistics
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F chalaguine-schulz-2017-assessing
%X We propose a new method in the field of argument analysis in social media to determining convincingness of arguments in online debates, following previous research by Habernal and Gurevych (2016). Rather than using argument specific feature values, we measure feature values relative to the average value in the debate, allowing us to determine argument convincingness with fewer features (between 5 and 35) than normally used for natural language processing tasks. We use a simple forward-feeding neural network for this task and achieve an accuracy of 0.77 which is comparable to the accuracy obtained using 64k features and a support vector machine by Habernal and Gurevych.
%U https://aclanthology.org/E17-4008/
%P 75-83
Markdown (Informal)
[Assessing Convincingness of Arguments in Online Debates with Limited Number of Features](https://aclanthology.org/E17-4008/) (Chalaguine & Schulz, EACL 2017)
ACL