@article{chiang-etal-2018-weighted,
title = "Weighted {DAG} Automata for Semantic Graphs",
author = "Chiang, David and
Drewes, Frank and
Gildea, Daniel and
Lopez, Adam and
Satta, Giorgio",
journal = "Computational Linguistics",
volume = "44",
number = "1",
month = apr,
year = "2018",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/J18-1005",
doi = "10.1162/COLI_a_00309",
pages = "119--186",
abstract = "Graphs have a variety of uses in natural language processing, particularly as representations of linguistic meaning. A deficit in this area of research is a formal framework for creating, combining, and using models involving graphs that parallels the frameworks of finite automata for strings and finite tree automata for trees. A possible starting point for such a framework is the formalism of directed acyclic graph (DAG) automata, defined by Kamimura and Slutzki and extended by Quernheim and Knight. In this article, we study the latter in depth, demonstrating several new results, including a practical recognition algorithm that can be used for inference and learning with models defined on DAG automata. We also propose an extension to graphs with unbounded node degree and show that our results carry over to the extended formalism.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chiang-etal-2018-weighted">
<titleInfo>
<title>Weighted DAG Automata for Semantic Graphs</title>
</titleInfo>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frank</namePart>
<namePart type="family">Drewes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Gildea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Lopez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giorgio</namePart>
<namePart type="family">Satta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Graphs have a variety of uses in natural language processing, particularly as representations of linguistic meaning. A deficit in this area of research is a formal framework for creating, combining, and using models involving graphs that parallels the frameworks of finite automata for strings and finite tree automata for trees. A possible starting point for such a framework is the formalism of directed acyclic graph (DAG) automata, defined by Kamimura and Slutzki and extended by Quernheim and Knight. In this article, we study the latter in depth, demonstrating several new results, including a practical recognition algorithm that can be used for inference and learning with models defined on DAG automata. We also propose an extension to graphs with unbounded node degree and show that our results carry over to the extended formalism.</abstract>
<identifier type="citekey">chiang-etal-2018-weighted</identifier>
<identifier type="doi">10.1162/COLI_a_00309</identifier>
<location>
<url>https://aclanthology.org/J18-1005</url>
</location>
<part>
<date>2018-04</date>
<detail type="volume"><number>44</number></detail>
<detail type="issue"><number>1</number></detail>
<extent unit="page">
<start>119</start>
<end>186</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Weighted DAG Automata for Semantic Graphs
%A Chiang, David
%A Drewes, Frank
%A Gildea, Daniel
%A Lopez, Adam
%A Satta, Giorgio
%J Computational Linguistics
%D 2018
%8 April
%V 44
%N 1
%I MIT Press
%C Cambridge, MA
%F chiang-etal-2018-weighted
%X Graphs have a variety of uses in natural language processing, particularly as representations of linguistic meaning. A deficit in this area of research is a formal framework for creating, combining, and using models involving graphs that parallels the frameworks of finite automata for strings and finite tree automata for trees. A possible starting point for such a framework is the formalism of directed acyclic graph (DAG) automata, defined by Kamimura and Slutzki and extended by Quernheim and Knight. In this article, we study the latter in depth, demonstrating several new results, including a practical recognition algorithm that can be used for inference and learning with models defined on DAG automata. We also propose an extension to graphs with unbounded node degree and show that our results carry over to the extended formalism.
%R 10.1162/COLI_a_00309
%U https://aclanthology.org/J18-1005
%U https://doi.org/10.1162/COLI_a_00309
%P 119-186
Markdown (Informal)
[Weighted DAG Automata for Semantic Graphs](https://aclanthology.org/J18-1005) (Chiang et al., CL 2018)
ACL