@inproceedings{qian-liu-2017-non,
title = "A non-{DNN} Feature Engineering Approach to Dependency Parsing {--} {FBAML} at {C}o{NLL} 2017 Shared Task",
author = "Qian, Xian and
Liu, Yang",
editor = "Haji{\v{c}}, Jan and
Zeman, Dan",
booktitle = "Proceedings of the {C}o{NLL} 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K17-3015",
doi = "10.18653/v1/K17-3015",
pages = "143--151",
abstract = "For this year{'}s multilingual dependency parsing shared task, we developed a pipeline system, which uses a variety of features for each of its components. Unlike the recent popular deep learning approaches that learn low dimensional dense features using non-linear classifier, our system uses structured linear classifiers to learn millions of sparse features. Specifically, we trained a linear classifier for sentence boundary prediction, linear chain conditional random fields (CRFs) for tokenization, part-of-speech tagging and morph analysis. A second order graph based parser learns the tree structure (without relations), and fa linear tree CRF then assigns relations to the dependencies in the tree. Our system achieves reasonable performance {--} 67.87{\%} official averaged macro F1 score",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="qian-liu-2017-non">
<titleInfo>
<title>A non-DNN Feature Engineering Approach to Dependency Parsing – FBAML at CoNLL 2017 Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xian</namePart>
<namePart type="family">Qian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Hajič</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Zeman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>For this year’s multilingual dependency parsing shared task, we developed a pipeline system, which uses a variety of features for each of its components. Unlike the recent popular deep learning approaches that learn low dimensional dense features using non-linear classifier, our system uses structured linear classifiers to learn millions of sparse features. Specifically, we trained a linear classifier for sentence boundary prediction, linear chain conditional random fields (CRFs) for tokenization, part-of-speech tagging and morph analysis. A second order graph based parser learns the tree structure (without relations), and fa linear tree CRF then assigns relations to the dependencies in the tree. Our system achieves reasonable performance – 67.87% official averaged macro F1 score</abstract>
<identifier type="citekey">qian-liu-2017-non</identifier>
<identifier type="doi">10.18653/v1/K17-3015</identifier>
<location>
<url>https://aclanthology.org/K17-3015</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>143</start>
<end>151</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A non-DNN Feature Engineering Approach to Dependency Parsing – FBAML at CoNLL 2017 Shared Task
%A Qian, Xian
%A Liu, Yang
%Y Hajič, Jan
%Y Zeman, Dan
%S Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F qian-liu-2017-non
%X For this year’s multilingual dependency parsing shared task, we developed a pipeline system, which uses a variety of features for each of its components. Unlike the recent popular deep learning approaches that learn low dimensional dense features using non-linear classifier, our system uses structured linear classifiers to learn millions of sparse features. Specifically, we trained a linear classifier for sentence boundary prediction, linear chain conditional random fields (CRFs) for tokenization, part-of-speech tagging and morph analysis. A second order graph based parser learns the tree structure (without relations), and fa linear tree CRF then assigns relations to the dependencies in the tree. Our system achieves reasonable performance – 67.87% official averaged macro F1 score
%R 10.18653/v1/K17-3015
%U https://aclanthology.org/K17-3015
%U https://doi.org/10.18653/v1/K17-3015
%P 143-151
Markdown (Informal)
[A non-DNN Feature Engineering Approach to Dependency Parsing – FBAML at CoNLL 2017 Shared Task](https://aclanthology.org/K17-3015) (Qian & Liu, CoNLL 2017)
ACL