@inproceedings{de-lhoneux-etal-2017-raw,
    title = "From Raw Text to {U}niversal {D}ependencies - Look, No Tags!",
    author = "de Lhoneux, Miryam  and
      Shao, Yan  and
      Basirat, Ali  and
      Kiperwasser, Eliyahu  and
      Stymne, Sara  and
      Goldberg, Yoav  and
      Nivre, Joakim",
    editor = "Haji{\v{c}}, Jan  and
      Zeman, Dan",
    booktitle = "Proceedings of the {C}o{NLL} 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
    month = aug,
    year = "2017",
    address = "Vancouver, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/K17-3022/",
    doi = "10.18653/v1/K17-3022",
    pages = "207--217",
    abstract = "We present the Uppsala submission to the CoNLL 2017 shared task on parsing from raw text to universal dependencies. Our system is a simple pipeline consisting of two components. The first performs joint word and sentence segmentation on raw text; the second predicts dependency trees from raw words. The parser bypasses the need for part-of-speech tagging, but uses word embeddings based on universal tag distributions. We achieved a macro-averaged LAS F1 of 65.11 in the official test run, which improved to 70.49 after bug fixes. We obtained the 2nd best result for sentence segmentation with a score of 89.03."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="de-lhoneux-etal-2017-raw">
    <titleInfo>
        <title>From Raw Text to Universal Dependencies - Look, No Tags!</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Miryam</namePart>
        <namePart type="family">de Lhoneux</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yan</namePart>
        <namePart type="family">Shao</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ali</namePart>
        <namePart type="family">Basirat</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Eliyahu</namePart>
        <namePart type="family">Kiperwasser</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Sara</namePart>
        <namePart type="family">Stymne</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yoav</namePart>
        <namePart type="family">Goldberg</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Joakim</namePart>
        <namePart type="family">Nivre</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jan</namePart>
            <namePart type="family">Hajič</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Dan</namePart>
            <namePart type="family">Zeman</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Vancouver, Canada</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We present the Uppsala submission to the CoNLL 2017 shared task on parsing from raw text to universal dependencies. Our system is a simple pipeline consisting of two components. The first performs joint word and sentence segmentation on raw text; the second predicts dependency trees from raw words. The parser bypasses the need for part-of-speech tagging, but uses word embeddings based on universal tag distributions. We achieved a macro-averaged LAS F1 of 65.11 in the official test run, which improved to 70.49 after bug fixes. We obtained the 2nd best result for sentence segmentation with a score of 89.03.</abstract>
    <identifier type="citekey">de-lhoneux-etal-2017-raw</identifier>
    <identifier type="doi">10.18653/v1/K17-3022</identifier>
    <location>
        <url>https://aclanthology.org/K17-3022/</url>
    </location>
    <part>
        <date>2017-08</date>
        <extent unit="page">
            <start>207</start>
            <end>217</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T From Raw Text to Universal Dependencies - Look, No Tags!
%A de Lhoneux, Miryam
%A Shao, Yan
%A Basirat, Ali
%A Kiperwasser, Eliyahu
%A Stymne, Sara
%A Goldberg, Yoav
%A Nivre, Joakim
%Y Hajič, Jan
%Y Zeman, Dan
%S Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F de-lhoneux-etal-2017-raw
%X We present the Uppsala submission to the CoNLL 2017 shared task on parsing from raw text to universal dependencies. Our system is a simple pipeline consisting of two components. The first performs joint word and sentence segmentation on raw text; the second predicts dependency trees from raw words. The parser bypasses the need for part-of-speech tagging, but uses word embeddings based on universal tag distributions. We achieved a macro-averaged LAS F1 of 65.11 in the official test run, which improved to 70.49 after bug fixes. We obtained the 2nd best result for sentence segmentation with a score of 89.03.
%R 10.18653/v1/K17-3022
%U https://aclanthology.org/K17-3022/
%U https://doi.org/10.18653/v1/K17-3022
%P 207-217
Markdown (Informal)
[From Raw Text to Universal Dependencies - Look, No Tags!](https://aclanthology.org/K17-3022/) (de Lhoneux et al., CoNLL 2017)
ACL
- Miryam de Lhoneux, Yan Shao, Ali Basirat, Eliyahu Kiperwasser, Sara Stymne, Yoav Goldberg, and Joakim Nivre. 2017. From Raw Text to Universal Dependencies - Look, No Tags!. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 207–217, Vancouver, Canada. Association for Computational Linguistics.