@inproceedings{tong-etal-2019-improving,
    title = "Improving Natural Language Understanding by Reverse Mapping Bytepair Encoding",
    author = "Tong, Chaodong  and
      Peng, Huailiang  and
      Dai, Qiong  and
      Jiang, Lei  and
      Huang, Jianghua",
    editor = "Bansal, Mohit  and
      Villavicencio, Aline",
    booktitle = "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)",
    month = nov,
    year = "2019",
    address = "Hong Kong, China",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/K19-1016/",
    doi = "10.18653/v1/K19-1016",
    pages = "163--173",
    abstract = "We propose a method called reverse mapping bytepair encoding, which maps named-entity information and other word-level linguistic features back to subwords during the encoding procedure of bytepair encoding (BPE). We employ this method to the Generative Pre-trained Transformer (OpenAI GPT) by adding a weighted linear layer after the embedding layer. We also propose a new model architecture named as the multi-channel separate transformer to employ a training process without parameter-sharing. Evaluation on Stories Cloze, RTE, SciTail and SST-2 datasets demonstrates the effectiveness of our approach."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tong-etal-2019-improving">
    <titleInfo>
        <title>Improving Natural Language Understanding by Reverse Mapping Bytepair Encoding</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Chaodong</namePart>
        <namePart type="family">Tong</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Huailiang</namePart>
        <namePart type="family">Peng</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Qiong</namePart>
        <namePart type="family">Dai</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Lei</namePart>
        <namePart type="family">Jiang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Jianghua</namePart>
        <namePart type="family">Huang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Mohit</namePart>
            <namePart type="family">Bansal</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aline</namePart>
            <namePart type="family">Villavicencio</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Hong Kong, China</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We propose a method called reverse mapping bytepair encoding, which maps named-entity information and other word-level linguistic features back to subwords during the encoding procedure of bytepair encoding (BPE). We employ this method to the Generative Pre-trained Transformer (OpenAI GPT) by adding a weighted linear layer after the embedding layer. We also propose a new model architecture named as the multi-channel separate transformer to employ a training process without parameter-sharing. Evaluation on Stories Cloze, RTE, SciTail and SST-2 datasets demonstrates the effectiveness of our approach.</abstract>
    <identifier type="citekey">tong-etal-2019-improving</identifier>
    <identifier type="doi">10.18653/v1/K19-1016</identifier>
    <location>
        <url>https://aclanthology.org/K19-1016/</url>
    </location>
    <part>
        <date>2019-11</date>
        <extent unit="page">
            <start>163</start>
            <end>173</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Natural Language Understanding by Reverse Mapping Bytepair Encoding
%A Tong, Chaodong
%A Peng, Huailiang
%A Dai, Qiong
%A Jiang, Lei
%A Huang, Jianghua
%Y Bansal, Mohit
%Y Villavicencio, Aline
%S Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F tong-etal-2019-improving
%X We propose a method called reverse mapping bytepair encoding, which maps named-entity information and other word-level linguistic features back to subwords during the encoding procedure of bytepair encoding (BPE). We employ this method to the Generative Pre-trained Transformer (OpenAI GPT) by adding a weighted linear layer after the embedding layer. We also propose a new model architecture named as the multi-channel separate transformer to employ a training process without parameter-sharing. Evaluation on Stories Cloze, RTE, SciTail and SST-2 datasets demonstrates the effectiveness of our approach.
%R 10.18653/v1/K19-1016
%U https://aclanthology.org/K19-1016/
%U https://doi.org/10.18653/v1/K19-1016
%P 163-173
Markdown (Informal)
[Improving Natural Language Understanding by Reverse Mapping Bytepair Encoding](https://aclanthology.org/K19-1016/) (Tong et al., CoNLL 2019)
ACL