@inproceedings{le-roux-etal-2019-representation,
title = "Representation Learning and Dynamic Programming for Arc-Hybrid Parsing",
author = "Le Roux, Joseph and
Rozenknop, Antoine and
Lacroix, Mathieu",
editor = "Bansal, Mohit and
Villavicencio, Aline",
booktitle = "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K19-1023/",
doi = "10.18653/v1/K19-1023",
pages = "238--248",
abstract = "We present a new method for transition-based parsing where a solution is a pair made of a dependency tree and a derivation graph describing the construction of the former. From this representation we are able to derive an efficient parsing algorithm and design a neural network that learns vertex representations and arc scores. Experimentally, although we only train via local classifiers, our approach improves over previous arc-hybrid systems and reach state-of-the-art parsing accuracy."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="le-roux-etal-2019-representation">
<titleInfo>
<title>Representation Learning and Dynamic Programming for Arc-Hybrid Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Le Roux</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antoine</namePart>
<namePart type="family">Rozenknop</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mathieu</namePart>
<namePart type="family">Lacroix</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a new method for transition-based parsing where a solution is a pair made of a dependency tree and a derivation graph describing the construction of the former. From this representation we are able to derive an efficient parsing algorithm and design a neural network that learns vertex representations and arc scores. Experimentally, although we only train via local classifiers, our approach improves over previous arc-hybrid systems and reach state-of-the-art parsing accuracy.</abstract>
<identifier type="citekey">le-roux-etal-2019-representation</identifier>
<identifier type="doi">10.18653/v1/K19-1023</identifier>
<location>
<url>https://aclanthology.org/K19-1023/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>238</start>
<end>248</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Representation Learning and Dynamic Programming for Arc-Hybrid Parsing
%A Le Roux, Joseph
%A Rozenknop, Antoine
%A Lacroix, Mathieu
%Y Bansal, Mohit
%Y Villavicencio, Aline
%S Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F le-roux-etal-2019-representation
%X We present a new method for transition-based parsing where a solution is a pair made of a dependency tree and a derivation graph describing the construction of the former. From this representation we are able to derive an efficient parsing algorithm and design a neural network that learns vertex representations and arc scores. Experimentally, although we only train via local classifiers, our approach improves over previous arc-hybrid systems and reach state-of-the-art parsing accuracy.
%R 10.18653/v1/K19-1023
%U https://aclanthology.org/K19-1023/
%U https://doi.org/10.18653/v1/K19-1023
%P 238-248
Markdown (Informal)
[Representation Learning and Dynamic Programming for Arc-Hybrid Parsing](https://aclanthology.org/K19-1023/) (Le Roux et al., CoNLL 2019)
ACL