@inproceedings{peng-etal-2018-learning,
title = "Learning Joint Semantic Parsers from Disjoint Data",
author = "Peng, Hao and
Thomson, Sam and
Swayamdipta, Swabha and
Smith, Noah A.",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-1135/",
doi = "10.18653/v1/N18-1135",
pages = "1492--1502",
abstract = "We present a new approach to learning a semantic parser from multiple datasets, even when the target semantic formalisms are drastically different and the underlying corpora do not overlap. We handle such {\textquotedblleft}disjoint{\textquotedblright} data by treating annotations for unobserved formalisms as latent structured variables. Building on state-of-the-art baselines, we show improvements both in frame-semantic parsing and semantic dependency parsing by modeling them jointly."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="peng-etal-2018-learning">
<titleInfo>
<title>Learning Joint Semantic Parsers from Disjoint Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sam</namePart>
<namePart type="family">Thomson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Swabha</namePart>
<namePart type="family">Swayamdipta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noah</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Smith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a new approach to learning a semantic parser from multiple datasets, even when the target semantic formalisms are drastically different and the underlying corpora do not overlap. We handle such “disjoint” data by treating annotations for unobserved formalisms as latent structured variables. Building on state-of-the-art baselines, we show improvements both in frame-semantic parsing and semantic dependency parsing by modeling them jointly.</abstract>
<identifier type="citekey">peng-etal-2018-learning</identifier>
<identifier type="doi">10.18653/v1/N18-1135</identifier>
<location>
<url>https://aclanthology.org/N18-1135/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>1492</start>
<end>1502</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning Joint Semantic Parsers from Disjoint Data
%A Peng, Hao
%A Thomson, Sam
%A Swayamdipta, Swabha
%A Smith, Noah A.
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F peng-etal-2018-learning
%X We present a new approach to learning a semantic parser from multiple datasets, even when the target semantic formalisms are drastically different and the underlying corpora do not overlap. We handle such “disjoint” data by treating annotations for unobserved formalisms as latent structured variables. Building on state-of-the-art baselines, we show improvements both in frame-semantic parsing and semantic dependency parsing by modeling them jointly.
%R 10.18653/v1/N18-1135
%U https://aclanthology.org/N18-1135/
%U https://doi.org/10.18653/v1/N18-1135
%P 1492-1502
Markdown (Informal)
[Learning Joint Semantic Parsers from Disjoint Data](https://aclanthology.org/N18-1135/) (Peng et al., NAACL 2018)
ACL
- Hao Peng, Sam Thomson, Swabha Swayamdipta, and Noah A. Smith. 2018. Learning Joint Semantic Parsers from Disjoint Data. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1492–1502, New Orleans, Louisiana. Association for Computational Linguistics.