@inproceedings{zhang-etal-2018-encoding,
title = "Encoding Conversation Context for Neural Keyphrase Extraction from Microblog Posts",
author = "Zhang, Yingyi and
Li, Jing and
Song, Yan and
Zhang, Chengzhi",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-1151/",
doi = "10.18653/v1/N18-1151",
pages = "1676--1686",
abstract = "Existing keyphrase extraction methods suffer from data sparsity problem when they are conducted on short and informal texts, especially microblog messages. Enriching context is one way to alleviate this problem. Considering that conversations are formed by reposting and replying messages, they provide useful clues for recognizing essential content in target posts and are therefore helpful for keyphrase identification. In this paper, we present a neural keyphrase extraction framework for microblog posts that takes their conversation context into account, where four types of neural encoders, namely, averaged embedding, RNN, attention, and memory networks, are proposed to represent the conversation context. Experimental results on Twitter and Weibo datasets show that our framework with such encoders outperforms state-of-the-art approaches."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2018-encoding">
<titleInfo>
<title>Encoding Conversation Context for Neural Keyphrase Extraction from Microblog Posts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yingyi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yan</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengzhi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Existing keyphrase extraction methods suffer from data sparsity problem when they are conducted on short and informal texts, especially microblog messages. Enriching context is one way to alleviate this problem. Considering that conversations are formed by reposting and replying messages, they provide useful clues for recognizing essential content in target posts and are therefore helpful for keyphrase identification. In this paper, we present a neural keyphrase extraction framework for microblog posts that takes their conversation context into account, where four types of neural encoders, namely, averaged embedding, RNN, attention, and memory networks, are proposed to represent the conversation context. Experimental results on Twitter and Weibo datasets show that our framework with such encoders outperforms state-of-the-art approaches.</abstract>
<identifier type="citekey">zhang-etal-2018-encoding</identifier>
<identifier type="doi">10.18653/v1/N18-1151</identifier>
<location>
<url>https://aclanthology.org/N18-1151/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>1676</start>
<end>1686</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Encoding Conversation Context for Neural Keyphrase Extraction from Microblog Posts
%A Zhang, Yingyi
%A Li, Jing
%A Song, Yan
%A Zhang, Chengzhi
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F zhang-etal-2018-encoding
%X Existing keyphrase extraction methods suffer from data sparsity problem when they are conducted on short and informal texts, especially microblog messages. Enriching context is one way to alleviate this problem. Considering that conversations are formed by reposting and replying messages, they provide useful clues for recognizing essential content in target posts and are therefore helpful for keyphrase identification. In this paper, we present a neural keyphrase extraction framework for microblog posts that takes their conversation context into account, where four types of neural encoders, namely, averaged embedding, RNN, attention, and memory networks, are proposed to represent the conversation context. Experimental results on Twitter and Weibo datasets show that our framework with such encoders outperforms state-of-the-art approaches.
%R 10.18653/v1/N18-1151
%U https://aclanthology.org/N18-1151/
%U https://doi.org/10.18653/v1/N18-1151
%P 1676-1686
Markdown (Informal)
[Encoding Conversation Context for Neural Keyphrase Extraction from Microblog Posts](https://aclanthology.org/N18-1151/) (Zhang et al., NAACL 2018)
ACL