@inproceedings{shah-etal-2018-bootstrapping,
title = "Bootstrapping a Neural Conversational Agent with Dialogue Self-Play, Crowdsourcing and On-Line Reinforcement Learning",
author = {Shah, Pararth and
Hakkani-T{\"u}r, Dilek and
Liu, Bing and
T{\"u}r, Gokhan},
editor = "Bangalore, Srinivas and
Chu-Carroll, Jennifer and
Li, Yunyao",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers)",
month = jun,
year = "2018",
address = "New Orleans - Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-3006/",
doi = "10.18653/v1/N18-3006",
pages = "41--51",
abstract = "End-to-end neural models show great promise towards building conversational agents that are trained from data and on-line experience using supervised and reinforcement learning. However, these models require a large corpus of dialogues to learn effectively. For goal-oriented dialogues, such datasets are expensive to collect and annotate, since each task involves a separate schema and database of entities. Further, the Wizard-of-Oz approach commonly used for dialogue collection does not provide sufficient coverage of salient dialogue flows, which is critical for guaranteeing an acceptable task completion rate in consumer-facing conversational agents. In this paper, we study a recently proposed approach for building an agent for arbitrary tasks by combining dialogue self-play and crowd-sourcing to generate fully-annotated dialogues with diverse and natural utterances. We discuss the advantages of this approach for industry applications of conversational agents, wherein an agent can be rapidly bootstrapped to deploy in front of users and further optimized via interactive learning from actual users of the system."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shah-etal-2018-bootstrapping">
<titleInfo>
<title>Bootstrapping a Neural Conversational Agent with Dialogue Self-Play, Crowdsourcing and On-Line Reinforcement Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pararth</namePart>
<namePart type="family">Shah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dilek</namePart>
<namePart type="family">Hakkani-Tür</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bing</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gokhan</namePart>
<namePart type="family">Tür</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Srinivas</namePart>
<namePart type="family">Bangalore</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jennifer</namePart>
<namePart type="family">Chu-Carroll</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunyao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans - Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>End-to-end neural models show great promise towards building conversational agents that are trained from data and on-line experience using supervised and reinforcement learning. However, these models require a large corpus of dialogues to learn effectively. For goal-oriented dialogues, such datasets are expensive to collect and annotate, since each task involves a separate schema and database of entities. Further, the Wizard-of-Oz approach commonly used for dialogue collection does not provide sufficient coverage of salient dialogue flows, which is critical for guaranteeing an acceptable task completion rate in consumer-facing conversational agents. In this paper, we study a recently proposed approach for building an agent for arbitrary tasks by combining dialogue self-play and crowd-sourcing to generate fully-annotated dialogues with diverse and natural utterances. We discuss the advantages of this approach for industry applications of conversational agents, wherein an agent can be rapidly bootstrapped to deploy in front of users and further optimized via interactive learning from actual users of the system.</abstract>
<identifier type="citekey">shah-etal-2018-bootstrapping</identifier>
<identifier type="doi">10.18653/v1/N18-3006</identifier>
<location>
<url>https://aclanthology.org/N18-3006/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>41</start>
<end>51</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Bootstrapping a Neural Conversational Agent with Dialogue Self-Play, Crowdsourcing and On-Line Reinforcement Learning
%A Shah, Pararth
%A Hakkani-Tür, Dilek
%A Liu, Bing
%A Tür, Gokhan
%Y Bangalore, Srinivas
%Y Chu-Carroll, Jennifer
%Y Li, Yunyao
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans - Louisiana
%F shah-etal-2018-bootstrapping
%X End-to-end neural models show great promise towards building conversational agents that are trained from data and on-line experience using supervised and reinforcement learning. However, these models require a large corpus of dialogues to learn effectively. For goal-oriented dialogues, such datasets are expensive to collect and annotate, since each task involves a separate schema and database of entities. Further, the Wizard-of-Oz approach commonly used for dialogue collection does not provide sufficient coverage of salient dialogue flows, which is critical for guaranteeing an acceptable task completion rate in consumer-facing conversational agents. In this paper, we study a recently proposed approach for building an agent for arbitrary tasks by combining dialogue self-play and crowd-sourcing to generate fully-annotated dialogues with diverse and natural utterances. We discuss the advantages of this approach for industry applications of conversational agents, wherein an agent can be rapidly bootstrapped to deploy in front of users and further optimized via interactive learning from actual users of the system.
%R 10.18653/v1/N18-3006
%U https://aclanthology.org/N18-3006/
%U https://doi.org/10.18653/v1/N18-3006
%P 41-51
Markdown (Informal)
[Bootstrapping a Neural Conversational Agent with Dialogue Self-Play, Crowdsourcing and On-Line Reinforcement Learning](https://aclanthology.org/N18-3006/) (Shah et al., NAACL 2018)
ACL