@inproceedings{lund-etal-2017-tandem,
title = "Tandem Anchoring: a Multiword Anchor Approach for Interactive Topic Modeling",
author = "Lund, Jeffrey and
Cook, Connor and
Seppi, Kevin and
Boyd-Graber, Jordan",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1083",
doi = "10.18653/v1/P17-1083",
pages = "896--905",
abstract = "Interactive topic models are powerful tools for those seeking to understand large collections of text. However, existing sampling-based interactive topic modeling approaches scale poorly to large data sets. Anchor methods, which use a single word to uniquely identify a topic, offer the speed needed for interactive work but lack both a mechanism to inject prior knowledge and lack the intuitive semantics needed for user-facing applications. We propose combinations of words as anchors, going beyond existing single word anchor algorithms{---}an approach we call {``}Tandem Anchors{''}. We begin with a synthetic investigation of this approach then apply the approach to interactive topic modeling in a user study and compare it to interactive and non-interactive approaches. Tandem anchors are faster and more intuitive than existing interactive approaches.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lund-etal-2017-tandem">
<titleInfo>
<title>Tandem Anchoring: a Multiword Anchor Approach for Interactive Topic Modeling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jeffrey</namePart>
<namePart type="family">Lund</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Connor</namePart>
<namePart type="family">Cook</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Seppi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Interactive topic models are powerful tools for those seeking to understand large collections of text. However, existing sampling-based interactive topic modeling approaches scale poorly to large data sets. Anchor methods, which use a single word to uniquely identify a topic, offer the speed needed for interactive work but lack both a mechanism to inject prior knowledge and lack the intuitive semantics needed for user-facing applications. We propose combinations of words as anchors, going beyond existing single word anchor algorithms—an approach we call “Tandem Anchors”. We begin with a synthetic investigation of this approach then apply the approach to interactive topic modeling in a user study and compare it to interactive and non-interactive approaches. Tandem anchors are faster and more intuitive than existing interactive approaches.</abstract>
<identifier type="citekey">lund-etal-2017-tandem</identifier>
<identifier type="doi">10.18653/v1/P17-1083</identifier>
<location>
<url>https://aclanthology.org/P17-1083</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>896</start>
<end>905</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Tandem Anchoring: a Multiword Anchor Approach for Interactive Topic Modeling
%A Lund, Jeffrey
%A Cook, Connor
%A Seppi, Kevin
%A Boyd-Graber, Jordan
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F lund-etal-2017-tandem
%X Interactive topic models are powerful tools for those seeking to understand large collections of text. However, existing sampling-based interactive topic modeling approaches scale poorly to large data sets. Anchor methods, which use a single word to uniquely identify a topic, offer the speed needed for interactive work but lack both a mechanism to inject prior knowledge and lack the intuitive semantics needed for user-facing applications. We propose combinations of words as anchors, going beyond existing single word anchor algorithms—an approach we call “Tandem Anchors”. We begin with a synthetic investigation of this approach then apply the approach to interactive topic modeling in a user study and compare it to interactive and non-interactive approaches. Tandem anchors are faster and more intuitive than existing interactive approaches.
%R 10.18653/v1/P17-1083
%U https://aclanthology.org/P17-1083
%U https://doi.org/10.18653/v1/P17-1083
%P 896-905
Markdown (Informal)
[Tandem Anchoring: a Multiword Anchor Approach for Interactive Topic Modeling](https://aclanthology.org/P17-1083) (Lund et al., ACL 2017)
ACL