@inproceedings{ji-smith-2017-neural,
title = "Neural Discourse Structure for Text Categorization",
author = "Ji, Yangfeng and
Smith, Noah A.",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1092/",
doi = "10.18653/v1/P17-1092",
pages = "996--1005",
abstract = "We show that discourse structure, as defined by Rhetorical Structure Theory and provided by an existing discourse parser, benefits text categorization. Our approach uses a recursive neural network and a newly proposed attention mechanism to compute a representation of the text that focuses on salient content, from the perspective of both RST and the task. Experiments consider variants of the approach and illustrate its strengths and weaknesses."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ji-smith-2017-neural">
<titleInfo>
<title>Neural Discourse Structure for Text Categorization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yangfeng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noah</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Smith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We show that discourse structure, as defined by Rhetorical Structure Theory and provided by an existing discourse parser, benefits text categorization. Our approach uses a recursive neural network and a newly proposed attention mechanism to compute a representation of the text that focuses on salient content, from the perspective of both RST and the task. Experiments consider variants of the approach and illustrate its strengths and weaknesses.</abstract>
<identifier type="citekey">ji-smith-2017-neural</identifier>
<identifier type="doi">10.18653/v1/P17-1092</identifier>
<location>
<url>https://aclanthology.org/P17-1092/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>996</start>
<end>1005</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Discourse Structure for Text Categorization
%A Ji, Yangfeng
%A Smith, Noah A.
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F ji-smith-2017-neural
%X We show that discourse structure, as defined by Rhetorical Structure Theory and provided by an existing discourse parser, benefits text categorization. Our approach uses a recursive neural network and a newly proposed attention mechanism to compute a representation of the text that focuses on salient content, from the perspective of both RST and the task. Experiments consider variants of the approach and illustrate its strengths and weaknesses.
%R 10.18653/v1/P17-1092
%U https://aclanthology.org/P17-1092/
%U https://doi.org/10.18653/v1/P17-1092
%P 996-1005
Markdown (Informal)
[Neural Discourse Structure for Text Categorization](https://aclanthology.org/P17-1092/) (Ji & Smith, ACL 2017)
ACL
- Yangfeng Ji and Noah A. Smith. 2017. Neural Discourse Structure for Text Categorization. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 996–1005, Vancouver, Canada. Association for Computational Linguistics.