@inproceedings{tien-nguyen-joty-2017-neural,
title = "A Neural Local Coherence Model",
author = "Tien Nguyen, Dat and
Joty, Shafiq",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1121",
doi = "10.18653/v1/P17-1121",
pages = "1320--1330",
abstract = "We propose a local coherence model based on a convolutional neural network that operates over the entity grid representation of a text. The model captures long range entity transitions along with entity-specific features without loosing generalization, thanks to the power of distributed representation. We present a pairwise ranking method to train the model in an end-to-end fashion on a task and learn task-specific high level features. Our evaluation on three different coherence assessment tasks demonstrates that our model achieves state of the art results outperforming existing models by a good margin.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tien-nguyen-joty-2017-neural">
<titleInfo>
<title>A Neural Local Coherence Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dat</namePart>
<namePart type="family">Tien Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shafiq</namePart>
<namePart type="family">Joty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a local coherence model based on a convolutional neural network that operates over the entity grid representation of a text. The model captures long range entity transitions along with entity-specific features without loosing generalization, thanks to the power of distributed representation. We present a pairwise ranking method to train the model in an end-to-end fashion on a task and learn task-specific high level features. Our evaluation on three different coherence assessment tasks demonstrates that our model achieves state of the art results outperforming existing models by a good margin.</abstract>
<identifier type="citekey">tien-nguyen-joty-2017-neural</identifier>
<identifier type="doi">10.18653/v1/P17-1121</identifier>
<location>
<url>https://aclanthology.org/P17-1121</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>1320</start>
<end>1330</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Neural Local Coherence Model
%A Tien Nguyen, Dat
%A Joty, Shafiq
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F tien-nguyen-joty-2017-neural
%X We propose a local coherence model based on a convolutional neural network that operates over the entity grid representation of a text. The model captures long range entity transitions along with entity-specific features without loosing generalization, thanks to the power of distributed representation. We present a pairwise ranking method to train the model in an end-to-end fashion on a task and learn task-specific high level features. Our evaluation on three different coherence assessment tasks demonstrates that our model achieves state of the art results outperforming existing models by a good margin.
%R 10.18653/v1/P17-1121
%U https://aclanthology.org/P17-1121
%U https://doi.org/10.18653/v1/P17-1121
%P 1320-1330
Markdown (Informal)
[A Neural Local Coherence Model](https://aclanthology.org/P17-1121) (Tien Nguyen & Joty, ACL 2017)
ACL
- Dat Tien Nguyen and Shafiq Joty. 2017. A Neural Local Coherence Model. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1320–1330, Vancouver, Canada. Association for Computational Linguistics.