@inproceedings{song-etal-2017-amr,
title = "{AMR}-to-text Generation with Synchronous Node Replacement Grammar",
author = "Song, Linfeng and
Peng, Xiaochang and
Zhang, Yue and
Wang, Zhiguo and
Gildea, Daniel",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2002/",
doi = "10.18653/v1/P17-2002",
pages = "7--13",
abstract = "This paper addresses the task of AMR-to-text generation by leveraging synchronous node replacement grammar. During training, graph-to-string rules are learned using a heuristic extraction algorithm. At test time, a graph transducer is applied to collapse input AMRs and generate output sentences. Evaluated on a standard benchmark, our method gives the state-of-the-art result."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="song-etal-2017-amr">
<titleInfo>
<title>AMR-to-text Generation with Synchronous Node Replacement Grammar</title>
</titleInfo>
<name type="personal">
<namePart type="given">Linfeng</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaochang</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiguo</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Gildea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper addresses the task of AMR-to-text generation by leveraging synchronous node replacement grammar. During training, graph-to-string rules are learned using a heuristic extraction algorithm. At test time, a graph transducer is applied to collapse input AMRs and generate output sentences. Evaluated on a standard benchmark, our method gives the state-of-the-art result.</abstract>
<identifier type="citekey">song-etal-2017-amr</identifier>
<identifier type="doi">10.18653/v1/P17-2002</identifier>
<location>
<url>https://aclanthology.org/P17-2002/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>7</start>
<end>13</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AMR-to-text Generation with Synchronous Node Replacement Grammar
%A Song, Linfeng
%A Peng, Xiaochang
%A Zhang, Yue
%A Wang, Zhiguo
%A Gildea, Daniel
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F song-etal-2017-amr
%X This paper addresses the task of AMR-to-text generation by leveraging synchronous node replacement grammar. During training, graph-to-string rules are learned using a heuristic extraction algorithm. At test time, a graph transducer is applied to collapse input AMRs and generate output sentences. Evaluated on a standard benchmark, our method gives the state-of-the-art result.
%R 10.18653/v1/P17-2002
%U https://aclanthology.org/P17-2002/
%U https://doi.org/10.18653/v1/P17-2002
%P 7-13
Markdown (Informal)
[AMR-to-text Generation with Synchronous Node Replacement Grammar](https://aclanthology.org/P17-2002/) (Song et al., ACL 2017)
ACL
- Linfeng Song, Xiaochang Peng, Yue Zhang, Zhiguo Wang, and Daniel Gildea. 2017. AMR-to-text Generation with Synchronous Node Replacement Grammar. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 7–13, Vancouver, Canada. Association for Computational Linguistics.