@inproceedings{ronnqvist-etal-2017-recurrent,
title = "A Recurrent Neural Model with Attention for the Recognition of {C}hinese Implicit Discourse Relations",
author = {R{\"o}nnqvist, Samuel and
Schenk, Niko and
Chiarcos, Christian},
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2040/",
doi = "10.18653/v1/P17-2040",
pages = "256--262",
abstract = "We introduce an attention-based Bi-LSTM for Chinese implicit discourse relations and demonstrate that modeling argument pairs as a joint sequence can outperform word order-agnostic approaches. Our model benefits from a partial sampling scheme and is conceptually simple, yet achieves state-of-the-art performance on the Chinese Discourse Treebank. We also visualize its attention activity to illustrate the model`s ability to selectively focus on the relevant parts of an input sequence."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ronnqvist-etal-2017-recurrent">
<titleInfo>
<title>A Recurrent Neural Model with Attention for the Recognition of Chinese Implicit Discourse Relations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Rönnqvist</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Niko</namePart>
<namePart type="family">Schenk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Chiarcos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce an attention-based Bi-LSTM for Chinese implicit discourse relations and demonstrate that modeling argument pairs as a joint sequence can outperform word order-agnostic approaches. Our model benefits from a partial sampling scheme and is conceptually simple, yet achieves state-of-the-art performance on the Chinese Discourse Treebank. We also visualize its attention activity to illustrate the model‘s ability to selectively focus on the relevant parts of an input sequence.</abstract>
<identifier type="citekey">ronnqvist-etal-2017-recurrent</identifier>
<identifier type="doi">10.18653/v1/P17-2040</identifier>
<location>
<url>https://aclanthology.org/P17-2040/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>256</start>
<end>262</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Recurrent Neural Model with Attention for the Recognition of Chinese Implicit Discourse Relations
%A Rönnqvist, Samuel
%A Schenk, Niko
%A Chiarcos, Christian
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F ronnqvist-etal-2017-recurrent
%X We introduce an attention-based Bi-LSTM for Chinese implicit discourse relations and demonstrate that modeling argument pairs as a joint sequence can outperform word order-agnostic approaches. Our model benefits from a partial sampling scheme and is conceptually simple, yet achieves state-of-the-art performance on the Chinese Discourse Treebank. We also visualize its attention activity to illustrate the model‘s ability to selectively focus on the relevant parts of an input sequence.
%R 10.18653/v1/P17-2040
%U https://aclanthology.org/P17-2040/
%U https://doi.org/10.18653/v1/P17-2040
%P 256-262
Markdown (Informal)
[A Recurrent Neural Model with Attention for the Recognition of Chinese Implicit Discourse Relations](https://aclanthology.org/P17-2040/) (Rönnqvist et al., ACL 2017)
ACL