@inproceedings{jamshid-lou-johnson-2017-disfluency,
title = "Disfluency Detection using a Noisy Channel Model and a Deep Neural Language Model",
author = "Jamshid Lou, Paria and
Johnson, Mark",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2087",
doi = "10.18653/v1/P17-2087",
pages = "547--553",
abstract = "This paper presents a model for disfluency detection in spontaneous speech transcripts called LSTM Noisy Channel Model. The model uses a Noisy Channel Model (NCM) to generate n-best candidate disfluency analyses and a Long Short-Term Memory (LSTM) language model to score the underlying fluent sentences of each analysis. The LSTM language model scores, along with other features, are used in a MaxEnt reranker to identify the most plausible analysis. We show that using an LSTM language model in the reranking process of noisy channel disfluency model improves the state-of-the-art in disfluency detection.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jamshid-lou-johnson-2017-disfluency">
<titleInfo>
<title>Disfluency Detection using a Noisy Channel Model and a Deep Neural Language Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paria</namePart>
<namePart type="family">Jamshid Lou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Johnson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents a model for disfluency detection in spontaneous speech transcripts called LSTM Noisy Channel Model. The model uses a Noisy Channel Model (NCM) to generate n-best candidate disfluency analyses and a Long Short-Term Memory (LSTM) language model to score the underlying fluent sentences of each analysis. The LSTM language model scores, along with other features, are used in a MaxEnt reranker to identify the most plausible analysis. We show that using an LSTM language model in the reranking process of noisy channel disfluency model improves the state-of-the-art in disfluency detection.</abstract>
<identifier type="citekey">jamshid-lou-johnson-2017-disfluency</identifier>
<identifier type="doi">10.18653/v1/P17-2087</identifier>
<location>
<url>https://aclanthology.org/P17-2087</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>547</start>
<end>553</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Disfluency Detection using a Noisy Channel Model and a Deep Neural Language Model
%A Jamshid Lou, Paria
%A Johnson, Mark
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F jamshid-lou-johnson-2017-disfluency
%X This paper presents a model for disfluency detection in spontaneous speech transcripts called LSTM Noisy Channel Model. The model uses a Noisy Channel Model (NCM) to generate n-best candidate disfluency analyses and a Long Short-Term Memory (LSTM) language model to score the underlying fluent sentences of each analysis. The LSTM language model scores, along with other features, are used in a MaxEnt reranker to identify the most plausible analysis. We show that using an LSTM language model in the reranking process of noisy channel disfluency model improves the state-of-the-art in disfluency detection.
%R 10.18653/v1/P17-2087
%U https://aclanthology.org/P17-2087
%U https://doi.org/10.18653/v1/P17-2087
%P 547-553
Markdown (Informal)
[Disfluency Detection using a Noisy Channel Model and a Deep Neural Language Model](https://aclanthology.org/P17-2087) (Jamshid Lou & Johnson, ACL 2017)
ACL