@inproceedings{shaw-etal-2019-generating,
    title = "Generating Logical Forms from Graph Representations of Text and Entities",
    author = "Shaw, Peter  and
      Massey, Philip  and
      Chen, Angelica  and
      Piccinno, Francesco  and
      Altun, Yasemin",
    editor = "Korhonen, Anna  and
      Traum, David  and
      M{\`a}rquez, Llu{\'i}s",
    booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/P19-1010/",
    doi = "10.18653/v1/P19-1010",
    pages = "95--106",
    abstract = "Structured information about entities is critical for many semantic parsing tasks. We present an approach that uses a Graph Neural Network (GNN) architecture to incorporate information about relevant entities and their relations during parsing. Combined with a decoder copy mechanism, this approach provides a conceptually simple mechanism to generate logical forms with entities. We demonstrate that this approach is competitive with the state-of-the-art across several tasks without pre-training, and outperforms existing approaches when combined with BERT pre-training."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shaw-etal-2019-generating">
    <titleInfo>
        <title>Generating Logical Forms from Graph Representations of Text and Entities</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Peter</namePart>
        <namePart type="family">Shaw</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Philip</namePart>
        <namePart type="family">Massey</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Angelica</namePart>
        <namePart type="family">Chen</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Francesco</namePart>
        <namePart type="family">Piccinno</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yasemin</namePart>
        <namePart type="family">Altun</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-07</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Anna</namePart>
            <namePart type="family">Korhonen</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">David</namePart>
            <namePart type="family">Traum</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Lluís</namePart>
            <namePart type="family">Màrquez</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Florence, Italy</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Structured information about entities is critical for many semantic parsing tasks. We present an approach that uses a Graph Neural Network (GNN) architecture to incorporate information about relevant entities and their relations during parsing. Combined with a decoder copy mechanism, this approach provides a conceptually simple mechanism to generate logical forms with entities. We demonstrate that this approach is competitive with the state-of-the-art across several tasks without pre-training, and outperforms existing approaches when combined with BERT pre-training.</abstract>
    <identifier type="citekey">shaw-etal-2019-generating</identifier>
    <identifier type="doi">10.18653/v1/P19-1010</identifier>
    <location>
        <url>https://aclanthology.org/P19-1010/</url>
    </location>
    <part>
        <date>2019-07</date>
        <extent unit="page">
            <start>95</start>
            <end>106</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Generating Logical Forms from Graph Representations of Text and Entities
%A Shaw, Peter
%A Massey, Philip
%A Chen, Angelica
%A Piccinno, Francesco
%A Altun, Yasemin
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F shaw-etal-2019-generating
%X Structured information about entities is critical for many semantic parsing tasks. We present an approach that uses a Graph Neural Network (GNN) architecture to incorporate information about relevant entities and their relations during parsing. Combined with a decoder copy mechanism, this approach provides a conceptually simple mechanism to generate logical forms with entities. We demonstrate that this approach is competitive with the state-of-the-art across several tasks without pre-training, and outperforms existing approaches when combined with BERT pre-training.
%R 10.18653/v1/P19-1010
%U https://aclanthology.org/P19-1010/
%U https://doi.org/10.18653/v1/P19-1010
%P 95-106
Markdown (Informal)
[Generating Logical Forms from Graph Representations of Text and Entities](https://aclanthology.org/P19-1010/) (Shaw et al., ACL 2019)
ACL