@inproceedings{zhang-goldwasser-2019-sentiment,
title = "Sentiment Tagging with Partial Labels using Modular Architectures",
author = "Zhang, Xiao and
Goldwasser, Dan",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1055/",
doi = "10.18653/v1/P19-1055",
pages = "579--590",
abstract = "Many NLP learning tasks can be decomposed into several distinct sub-tasks, each associated with a partial label. In this paper we focus on a popular class of learning problems, sequence prediction applied to several sentiment analysis tasks, and suggest a modular learning approach in which different sub-tasks are learned using separate functional modules, combined to perform the final task while sharing information. Our experiments show this approach helps constrain the learning process and can alleviate some of the supervision efforts."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-goldwasser-2019-sentiment">
<titleInfo>
<title>Sentiment Tagging with Partial Labels using Modular Architectures</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiao</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Goldwasser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Many NLP learning tasks can be decomposed into several distinct sub-tasks, each associated with a partial label. In this paper we focus on a popular class of learning problems, sequence prediction applied to several sentiment analysis tasks, and suggest a modular learning approach in which different sub-tasks are learned using separate functional modules, combined to perform the final task while sharing information. Our experiments show this approach helps constrain the learning process and can alleviate some of the supervision efforts.</abstract>
<identifier type="citekey">zhang-goldwasser-2019-sentiment</identifier>
<identifier type="doi">10.18653/v1/P19-1055</identifier>
<location>
<url>https://aclanthology.org/P19-1055/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>579</start>
<end>590</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sentiment Tagging with Partial Labels using Modular Architectures
%A Zhang, Xiao
%A Goldwasser, Dan
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F zhang-goldwasser-2019-sentiment
%X Many NLP learning tasks can be decomposed into several distinct sub-tasks, each associated with a partial label. In this paper we focus on a popular class of learning problems, sequence prediction applied to several sentiment analysis tasks, and suggest a modular learning approach in which different sub-tasks are learned using separate functional modules, combined to perform the final task while sharing information. Our experiments show this approach helps constrain the learning process and can alleviate some of the supervision efforts.
%R 10.18653/v1/P19-1055
%U https://aclanthology.org/P19-1055/
%U https://doi.org/10.18653/v1/P19-1055
%P 579-590
Markdown (Informal)
[Sentiment Tagging with Partial Labels using Modular Architectures](https://aclanthology.org/P19-1055/) (Zhang & Goldwasser, ACL 2019)
ACL