@inproceedings{fu-etal-2019-graphrel,
title = "{G}raph{R}el: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction",
author = "Fu, Tsu-Jui and
Li, Peng-Hsuan and
Ma, Wei-Yun",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1136",
doi = "10.18653/v1/P19-1136",
pages = "1409--1418",
abstract = "In this paper, we present GraphRel, an end-to-end relation extraction model which uses graph convolutional networks (GCNs) to jointly learn named entities and relations. In contrast to previous baselines, we consider the interaction between named entities and relations via a 2nd-phase relation-weighted GCN to better extract relations. Linear and dependency structures are both used to extract both sequential and regional features of the text, and a complete word graph is further utilized to extract implicit features among all word pairs of the text. With the graph-based approach, the prediction for overlapping relations is substantially improved over previous sequential approaches. We evaluate GraphRel on two public datasets: NYT and WebNLG. Results show that GraphRel maintains high precision while increasing recall substantially. Also, GraphRel outperforms previous work by 3.2{\%} and 5.8{\%} (F1 score), achieving a new state-of-the-art for relation extraction.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fu-etal-2019-graphrel">
<titleInfo>
<title>GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tsu-Jui</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peng-Hsuan</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei-Yun</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present GraphRel, an end-to-end relation extraction model which uses graph convolutional networks (GCNs) to jointly learn named entities and relations. In contrast to previous baselines, we consider the interaction between named entities and relations via a 2nd-phase relation-weighted GCN to better extract relations. Linear and dependency structures are both used to extract both sequential and regional features of the text, and a complete word graph is further utilized to extract implicit features among all word pairs of the text. With the graph-based approach, the prediction for overlapping relations is substantially improved over previous sequential approaches. We evaluate GraphRel on two public datasets: NYT and WebNLG. Results show that GraphRel maintains high precision while increasing recall substantially. Also, GraphRel outperforms previous work by 3.2% and 5.8% (F1 score), achieving a new state-of-the-art for relation extraction.</abstract>
<identifier type="citekey">fu-etal-2019-graphrel</identifier>
<identifier type="doi">10.18653/v1/P19-1136</identifier>
<location>
<url>https://aclanthology.org/P19-1136</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>1409</start>
<end>1418</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction
%A Fu, Tsu-Jui
%A Li, Peng-Hsuan
%A Ma, Wei-Yun
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F fu-etal-2019-graphrel
%X In this paper, we present GraphRel, an end-to-end relation extraction model which uses graph convolutional networks (GCNs) to jointly learn named entities and relations. In contrast to previous baselines, we consider the interaction between named entities and relations via a 2nd-phase relation-weighted GCN to better extract relations. Linear and dependency structures are both used to extract both sequential and regional features of the text, and a complete word graph is further utilized to extract implicit features among all word pairs of the text. With the graph-based approach, the prediction for overlapping relations is substantially improved over previous sequential approaches. We evaluate GraphRel on two public datasets: NYT and WebNLG. Results show that GraphRel maintains high precision while increasing recall substantially. Also, GraphRel outperforms previous work by 3.2% and 5.8% (F1 score), achieving a new state-of-the-art for relation extraction.
%R 10.18653/v1/P19-1136
%U https://aclanthology.org/P19-1136
%U https://doi.org/10.18653/v1/P19-1136
%P 1409-1418
Markdown (Informal)
[GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction](https://aclanthology.org/P19-1136) (Fu et al., ACL 2019)
ACL