@inproceedings{zheng-etal-2019-diag,
title = "{DIAG}-{NRE}: A Neural Pattern Diagnosis Framework for Distantly Supervised Neural Relation Extraction",
author = "Zheng, Shun and
Han, Xu and
Lin, Yankai and
Yu, Peilin and
Chen, Lu and
Huang, Ling and
Liu, Zhiyuan and
Xu, Wei",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1137/",
doi = "10.18653/v1/P19-1137",
pages = "1419--1429",
abstract = "Pattern-based labeling methods have achieved promising results in alleviating the inevitable labeling noises of distantly supervised neural relation extraction. However, these methods require significant expert labor to write relation-specific patterns, which makes them too sophisticated to generalize quickly. To ease the labor-intensive workload of pattern writing and enable the quick generalization to new relation types, we propose a neural pattern diagnosis framework, DIAG-NRE, that can automatically summarize and refine high-quality relational patterns from noise data with human experts in the loop. To demonstrate the effectiveness of DIAG-NRE, we apply it to two real-world datasets and present both significant and interpretable improvements over state-of-the-art methods."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zheng-etal-2019-diag">
<titleInfo>
<title>DIAG-NRE: A Neural Pattern Diagnosis Framework for Distantly Supervised Neural Relation Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shun</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xu</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yankai</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peilin</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ling</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Pattern-based labeling methods have achieved promising results in alleviating the inevitable labeling noises of distantly supervised neural relation extraction. However, these methods require significant expert labor to write relation-specific patterns, which makes them too sophisticated to generalize quickly. To ease the labor-intensive workload of pattern writing and enable the quick generalization to new relation types, we propose a neural pattern diagnosis framework, DIAG-NRE, that can automatically summarize and refine high-quality relational patterns from noise data with human experts in the loop. To demonstrate the effectiveness of DIAG-NRE, we apply it to two real-world datasets and present both significant and interpretable improvements over state-of-the-art methods.</abstract>
<identifier type="citekey">zheng-etal-2019-diag</identifier>
<identifier type="doi">10.18653/v1/P19-1137</identifier>
<location>
<url>https://aclanthology.org/P19-1137/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>1419</start>
<end>1429</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DIAG-NRE: A Neural Pattern Diagnosis Framework for Distantly Supervised Neural Relation Extraction
%A Zheng, Shun
%A Han, Xu
%A Lin, Yankai
%A Yu, Peilin
%A Chen, Lu
%A Huang, Ling
%A Liu, Zhiyuan
%A Xu, Wei
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F zheng-etal-2019-diag
%X Pattern-based labeling methods have achieved promising results in alleviating the inevitable labeling noises of distantly supervised neural relation extraction. However, these methods require significant expert labor to write relation-specific patterns, which makes them too sophisticated to generalize quickly. To ease the labor-intensive workload of pattern writing and enable the quick generalization to new relation types, we propose a neural pattern diagnosis framework, DIAG-NRE, that can automatically summarize and refine high-quality relational patterns from noise data with human experts in the loop. To demonstrate the effectiveness of DIAG-NRE, we apply it to two real-world datasets and present both significant and interpretable improvements over state-of-the-art methods.
%R 10.18653/v1/P19-1137
%U https://aclanthology.org/P19-1137/
%U https://doi.org/10.18653/v1/P19-1137
%P 1419-1429
Markdown (Informal)
[DIAG-NRE: A Neural Pattern Diagnosis Framework for Distantly Supervised Neural Relation Extraction](https://aclanthology.org/P19-1137/) (Zheng et al., ACL 2019)
ACL
- Shun Zheng, Xu Han, Yankai Lin, Peilin Yu, Lu Chen, Ling Huang, Zhiyuan Liu, and Wei Xu. 2019. DIAG-NRE: A Neural Pattern Diagnosis Framework for Distantly Supervised Neural Relation Extraction. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1419–1429, Florence, Italy. Association for Computational Linguistics.