@inproceedings{kaneko-bollegala-2019-gender,
title = "Gender-preserving Debiasing for Pre-trained Word Embeddings",
author = "Kaneko, Masahiro and
Bollegala, Danushka",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1160",
doi = "10.18653/v1/P19-1160",
pages = "1641--1650",
abstract = "Word embeddings learnt from massive text collections have demonstrated significant levels of discriminative biases such as gender, racial or ethnic biases, which in turn bias the down-stream NLP applications that use those word embeddings. Taking gender-bias as a working example, we propose a debiasing method that preserves non-discriminative gender-related information, while removing stereotypical discriminative gender biases from pre-trained word embeddings. Specifically, we consider four types of information: \textit{feminine}, \textit{masculine}, \textit{gender-neutral} and \textit{stereotypical}, which represent the relationship between gender vs. bias, and propose a debiasing method that (a) preserves the gender-related information in feminine and masculine words, (b) preserves the neutrality in gender-neutral words, and (c) removes the biases from stereotypical words. Experimental results on several previously proposed benchmark datasets show that our proposed method can debias pre-trained word embeddings better than existing SoTA methods proposed for debiasing word embeddings while preserving gender-related but non-discriminative information.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kaneko-bollegala-2019-gender">
<titleInfo>
<title>Gender-preserving Debiasing for Pre-trained Word Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Masahiro</namePart>
<namePart type="family">Kaneko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Danushka</namePart>
<namePart type="family">Bollegala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Word embeddings learnt from massive text collections have demonstrated significant levels of discriminative biases such as gender, racial or ethnic biases, which in turn bias the down-stream NLP applications that use those word embeddings. Taking gender-bias as a working example, we propose a debiasing method that preserves non-discriminative gender-related information, while removing stereotypical discriminative gender biases from pre-trained word embeddings. Specifically, we consider four types of information: feminine, masculine, gender-neutral and stereotypical, which represent the relationship between gender vs. bias, and propose a debiasing method that (a) preserves the gender-related information in feminine and masculine words, (b) preserves the neutrality in gender-neutral words, and (c) removes the biases from stereotypical words. Experimental results on several previously proposed benchmark datasets show that our proposed method can debias pre-trained word embeddings better than existing SoTA methods proposed for debiasing word embeddings while preserving gender-related but non-discriminative information.</abstract>
<identifier type="citekey">kaneko-bollegala-2019-gender</identifier>
<identifier type="doi">10.18653/v1/P19-1160</identifier>
<location>
<url>https://aclanthology.org/P19-1160</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>1641</start>
<end>1650</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Gender-preserving Debiasing for Pre-trained Word Embeddings
%A Kaneko, Masahiro
%A Bollegala, Danushka
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F kaneko-bollegala-2019-gender
%X Word embeddings learnt from massive text collections have demonstrated significant levels of discriminative biases such as gender, racial or ethnic biases, which in turn bias the down-stream NLP applications that use those word embeddings. Taking gender-bias as a working example, we propose a debiasing method that preserves non-discriminative gender-related information, while removing stereotypical discriminative gender biases from pre-trained word embeddings. Specifically, we consider four types of information: feminine, masculine, gender-neutral and stereotypical, which represent the relationship between gender vs. bias, and propose a debiasing method that (a) preserves the gender-related information in feminine and masculine words, (b) preserves the neutrality in gender-neutral words, and (c) removes the biases from stereotypical words. Experimental results on several previously proposed benchmark datasets show that our proposed method can debias pre-trained word embeddings better than existing SoTA methods proposed for debiasing word embeddings while preserving gender-related but non-discriminative information.
%R 10.18653/v1/P19-1160
%U https://aclanthology.org/P19-1160
%U https://doi.org/10.18653/v1/P19-1160
%P 1641-1650
Markdown (Informal)
[Gender-preserving Debiasing for Pre-trained Word Embeddings](https://aclanthology.org/P19-1160) (Kaneko & Bollegala, ACL 2019)
ACL