@inproceedings{stanovsky-etal-2019-evaluating,
title = "Evaluating Gender Bias in Machine Translation",
author = "Stanovsky, Gabriel and
Smith, Noah A. and
Zettlemoyer, Luke",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1164/",
doi = "10.18653/v1/P19-1164",
pages = "1679--1684",
abstract = "We present the first challenge set and evaluation protocol for the analysis of gender bias in machine translation (MT). Our approach uses two recent coreference resolution datasets composed of English sentences which cast participants into non-stereotypical gender roles (e.g., {\textquotedblleft}The doctor asked the nurse to help her in the operation{\textquotedblright}). We devise an automatic gender bias evaluation method for eight target languages with grammatical gender, based on morphological analysis (e.g., the use of female inflection for the word {\textquotedblleft}doctor{\textquotedblright}). Our analyses show that four popular industrial MT systems and two recent state-of-the-art academic MT models are significantly prone to gender-biased translation errors for all tested target languages. Our data and code are publicly available at \url{https://github.com/gabrielStanovsky/mt_gender}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="stanovsky-etal-2019-evaluating">
<titleInfo>
<title>Evaluating Gender Bias in Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Stanovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noah</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Smith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luke</namePart>
<namePart type="family">Zettlemoyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present the first challenge set and evaluation protocol for the analysis of gender bias in machine translation (MT). Our approach uses two recent coreference resolution datasets composed of English sentences which cast participants into non-stereotypical gender roles (e.g., “The doctor asked the nurse to help her in the operation”). We devise an automatic gender bias evaluation method for eight target languages with grammatical gender, based on morphological analysis (e.g., the use of female inflection for the word “doctor”). Our analyses show that four popular industrial MT systems and two recent state-of-the-art academic MT models are significantly prone to gender-biased translation errors for all tested target languages. Our data and code are publicly available at https://github.com/gabrielStanovsky/mt_gender.</abstract>
<identifier type="citekey">stanovsky-etal-2019-evaluating</identifier>
<identifier type="doi">10.18653/v1/P19-1164</identifier>
<location>
<url>https://aclanthology.org/P19-1164/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>1679</start>
<end>1684</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Evaluating Gender Bias in Machine Translation
%A Stanovsky, Gabriel
%A Smith, Noah A.
%A Zettlemoyer, Luke
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F stanovsky-etal-2019-evaluating
%X We present the first challenge set and evaluation protocol for the analysis of gender bias in machine translation (MT). Our approach uses two recent coreference resolution datasets composed of English sentences which cast participants into non-stereotypical gender roles (e.g., “The doctor asked the nurse to help her in the operation”). We devise an automatic gender bias evaluation method for eight target languages with grammatical gender, based on morphological analysis (e.g., the use of female inflection for the word “doctor”). Our analyses show that four popular industrial MT systems and two recent state-of-the-art academic MT models are significantly prone to gender-biased translation errors for all tested target languages. Our data and code are publicly available at https://github.com/gabrielStanovsky/mt_gender.
%R 10.18653/v1/P19-1164
%U https://aclanthology.org/P19-1164/
%U https://doi.org/10.18653/v1/P19-1164
%P 1679-1684
Markdown (Informal)
[Evaluating Gender Bias in Machine Translation](https://aclanthology.org/P19-1164/) (Stanovsky et al., ACL 2019)
ACL
- Gabriel Stanovsky, Noah A. Smith, and Luke Zettlemoyer. 2019. Evaluating Gender Bias in Machine Translation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1679–1684, Florence, Italy. Association for Computational Linguistics.