@inproceedings{chen-chen-2019-adversarial,
title = "Adversarial Domain Adaptation Using Artificial Titles for Abstractive Title Generation",
author = "Chen, Francine and
Chen, Yan-Ying",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1211",
doi = "10.18653/v1/P19-1211",
pages = "2197--2203",
abstract = "A common issue in training a deep learning, abstractive summarization model is lack of a large set of training summaries. This paper examines techniques for adapting from a labeled source domain to an unlabeled target domain in the context of an encoder-decoder model for text generation. In addition to adversarial domain adaptation (ADA), we introduce the use of artificial titles and sequential training to capture the grammatical style of the unlabeled target domain. Evaluation on adapting to/from news articles and Stack Exchange posts indicates that the use of these techniques can boost performance for both unsupervised adaptation as well as fine-tuning with limited target data.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-chen-2019-adversarial">
<titleInfo>
<title>Adversarial Domain Adaptation Using Artificial Titles for Abstractive Title Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Francine</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yan-Ying</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>A common issue in training a deep learning, abstractive summarization model is lack of a large set of training summaries. This paper examines techniques for adapting from a labeled source domain to an unlabeled target domain in the context of an encoder-decoder model for text generation. In addition to adversarial domain adaptation (ADA), we introduce the use of artificial titles and sequential training to capture the grammatical style of the unlabeled target domain. Evaluation on adapting to/from news articles and Stack Exchange posts indicates that the use of these techniques can boost performance for both unsupervised adaptation as well as fine-tuning with limited target data.</abstract>
<identifier type="citekey">chen-chen-2019-adversarial</identifier>
<identifier type="doi">10.18653/v1/P19-1211</identifier>
<location>
<url>https://aclanthology.org/P19-1211</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>2197</start>
<end>2203</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Adversarial Domain Adaptation Using Artificial Titles for Abstractive Title Generation
%A Chen, Francine
%A Chen, Yan-Ying
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F chen-chen-2019-adversarial
%X A common issue in training a deep learning, abstractive summarization model is lack of a large set of training summaries. This paper examines techniques for adapting from a labeled source domain to an unlabeled target domain in the context of an encoder-decoder model for text generation. In addition to adversarial domain adaptation (ADA), we introduce the use of artificial titles and sequential training to capture the grammatical style of the unlabeled target domain. Evaluation on adapting to/from news articles and Stack Exchange posts indicates that the use of these techniques can boost performance for both unsupervised adaptation as well as fine-tuning with limited target data.
%R 10.18653/v1/P19-1211
%U https://aclanthology.org/P19-1211
%U https://doi.org/10.18653/v1/P19-1211
%P 2197-2203
Markdown (Informal)
[Adversarial Domain Adaptation Using Artificial Titles for Abstractive Title Generation](https://aclanthology.org/P19-1211) (Chen & Chen, ACL 2019)
ACL