@inproceedings{kurita-sogaard-2019-multi,
title = "Multi-Task Semantic Dependency Parsing with Policy Gradient for Learning Easy-First Strategies",
author = "Kurita, Shuhei and
S{\o}gaard, Anders",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1232/",
doi = "10.18653/v1/P19-1232",
pages = "2420--2430",
abstract = "In Semantic Dependency Parsing (SDP), semantic relations form directed acyclic graphs, rather than trees. We propose a new iterative predicate selection (IPS) algorithm for SDP. Our IPS algorithm combines the graph-based and transition-based parsing approaches in order to handle multiple semantic head words. We train the IPS model using a combination of multi-task learning and task-specific policy gradient training. Trained this way, IPS achieves a new state of the art on the SemEval 2015 Task 18 datasets. Furthermore, we observe that policy gradient training learns an easy-first strategy."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kurita-sogaard-2019-multi">
<titleInfo>
<title>Multi-Task Semantic Dependency Parsing with Policy Gradient for Learning Easy-First Strategies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shuhei</namePart>
<namePart type="family">Kurita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anders</namePart>
<namePart type="family">Søgaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In Semantic Dependency Parsing (SDP), semantic relations form directed acyclic graphs, rather than trees. We propose a new iterative predicate selection (IPS) algorithm for SDP. Our IPS algorithm combines the graph-based and transition-based parsing approaches in order to handle multiple semantic head words. We train the IPS model using a combination of multi-task learning and task-specific policy gradient training. Trained this way, IPS achieves a new state of the art on the SemEval 2015 Task 18 datasets. Furthermore, we observe that policy gradient training learns an easy-first strategy.</abstract>
<identifier type="citekey">kurita-sogaard-2019-multi</identifier>
<identifier type="doi">10.18653/v1/P19-1232</identifier>
<location>
<url>https://aclanthology.org/P19-1232/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>2420</start>
<end>2430</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-Task Semantic Dependency Parsing with Policy Gradient for Learning Easy-First Strategies
%A Kurita, Shuhei
%A Søgaard, Anders
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F kurita-sogaard-2019-multi
%X In Semantic Dependency Parsing (SDP), semantic relations form directed acyclic graphs, rather than trees. We propose a new iterative predicate selection (IPS) algorithm for SDP. Our IPS algorithm combines the graph-based and transition-based parsing approaches in order to handle multiple semantic head words. We train the IPS model using a combination of multi-task learning and task-specific policy gradient training. Trained this way, IPS achieves a new state of the art on the SemEval 2015 Task 18 datasets. Furthermore, we observe that policy gradient training learns an easy-first strategy.
%R 10.18653/v1/P19-1232
%U https://aclanthology.org/P19-1232/
%U https://doi.org/10.18653/v1/P19-1232
%P 2420-2430
Markdown (Informal)
[Multi-Task Semantic Dependency Parsing with Policy Gradient for Learning Easy-First Strategies](https://aclanthology.org/P19-1232/) (Kurita & Søgaard, ACL 2019)
ACL