@inproceedings{ding-etal-2019-cognitive,
title = "Cognitive Graph for Multi-Hop Reading Comprehension at Scale",
author = "Ding, Ming and
Zhou, Chang and
Chen, Qibin and
Yang, Hongxia and
Tang, Jie",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1259/",
doi = "10.18653/v1/P19-1259",
pages = "2694--2703",
abstract = "We propose a new CogQA framework for multi-hop reading comprehension question answering in web-scale documents. Founded on the dual process theory in cognitive science, the framework gradually builds a \textit{cognitive graph} in an iterative process by coordinating an implicit extraction module (System 1) and an explicit reasoning module (System 2). While giving accurate answers, our framework further provides explainable reasoning paths. Specifically, our implementation based on BERT and graph neural network efficiently handles millions of documents for multi-hop reasoning questions in the HotpotQA fullwiki dataset, achieving a winning joint $F_1$ score of 34.9 on the leaderboard, compared to 23.1 of the best competitor."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ding-etal-2019-cognitive">
<titleInfo>
<title>Cognitive Graph for Multi-Hop Reading Comprehension at Scale</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ming</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chang</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qibin</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongxia</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a new CogQA framework for multi-hop reading comprehension question answering in web-scale documents. Founded on the dual process theory in cognitive science, the framework gradually builds a cognitive graph in an iterative process by coordinating an implicit extraction module (System 1) and an explicit reasoning module (System 2). While giving accurate answers, our framework further provides explainable reasoning paths. Specifically, our implementation based on BERT and graph neural network efficiently handles millions of documents for multi-hop reasoning questions in the HotpotQA fullwiki dataset, achieving a winning joint F₁ score of 34.9 on the leaderboard, compared to 23.1 of the best competitor.</abstract>
<identifier type="citekey">ding-etal-2019-cognitive</identifier>
<identifier type="doi">10.18653/v1/P19-1259</identifier>
<location>
<url>https://aclanthology.org/P19-1259/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>2694</start>
<end>2703</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cognitive Graph for Multi-Hop Reading Comprehension at Scale
%A Ding, Ming
%A Zhou, Chang
%A Chen, Qibin
%A Yang, Hongxia
%A Tang, Jie
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F ding-etal-2019-cognitive
%X We propose a new CogQA framework for multi-hop reading comprehension question answering in web-scale documents. Founded on the dual process theory in cognitive science, the framework gradually builds a cognitive graph in an iterative process by coordinating an implicit extraction module (System 1) and an explicit reasoning module (System 2). While giving accurate answers, our framework further provides explainable reasoning paths. Specifically, our implementation based on BERT and graph neural network efficiently handles millions of documents for multi-hop reasoning questions in the HotpotQA fullwiki dataset, achieving a winning joint F₁ score of 34.9 on the leaderboard, compared to 23.1 of the best competitor.
%R 10.18653/v1/P19-1259
%U https://aclanthology.org/P19-1259/
%U https://doi.org/10.18653/v1/P19-1259
%P 2694-2703
Markdown (Informal)
[Cognitive Graph for Multi-Hop Reading Comprehension at Scale](https://aclanthology.org/P19-1259/) (Ding et al., ACL 2019)
ACL