@inproceedings{schulz-etal-2019-analysis,
title = "Analysis of Automatic Annotation Suggestions for Hard Discourse-Level Tasks in Expert Domains",
author = "Schulz, Claudia and
Meyer, Christian M. and
Kiesewetter, Jan and
Sailer, Michael and
Bauer, Elisabeth and
Fischer, Martin R. and
Fischer, Frank and
Gurevych, Iryna",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1265/",
doi = "10.18653/v1/P19-1265",
pages = "2761--2772",
abstract = "Many complex discourse-level tasks can aid domain experts in their work but require costly expert annotations for data creation. To speed up and ease annotations, we investigate the viability of automatically generated annotation suggestions for such tasks. As an example, we choose a task that is particularly hard for both humans and machines: the segmentation and classification of epistemic activities in diagnostic reasoning texts. We create and publish a new dataset covering two domains and carefully analyse the suggested annotations. We find that suggestions have positive effects on annotation speed and performance, while not introducing noteworthy biases. Envisioning suggestion models that improve with newly annotated texts, we contrast methods for continuous model adjustment and suggest the most effective setup for suggestions in future expert tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schulz-etal-2019-analysis">
<titleInfo>
<title>Analysis of Automatic Annotation Suggestions for Hard Discourse-Level Tasks in Expert Domains</title>
</titleInfo>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Schulz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Meyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Kiesewetter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Sailer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisabeth</namePart>
<namePart type="family">Bauer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Fischer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frank</namePart>
<namePart type="family">Fischer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Many complex discourse-level tasks can aid domain experts in their work but require costly expert annotations for data creation. To speed up and ease annotations, we investigate the viability of automatically generated annotation suggestions for such tasks. As an example, we choose a task that is particularly hard for both humans and machines: the segmentation and classification of epistemic activities in diagnostic reasoning texts. We create and publish a new dataset covering two domains and carefully analyse the suggested annotations. We find that suggestions have positive effects on annotation speed and performance, while not introducing noteworthy biases. Envisioning suggestion models that improve with newly annotated texts, we contrast methods for continuous model adjustment and suggest the most effective setup for suggestions in future expert tasks.</abstract>
<identifier type="citekey">schulz-etal-2019-analysis</identifier>
<identifier type="doi">10.18653/v1/P19-1265</identifier>
<location>
<url>https://aclanthology.org/P19-1265/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>2761</start>
<end>2772</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Analysis of Automatic Annotation Suggestions for Hard Discourse-Level Tasks in Expert Domains
%A Schulz, Claudia
%A Meyer, Christian M.
%A Kiesewetter, Jan
%A Sailer, Michael
%A Bauer, Elisabeth
%A Fischer, Martin R.
%A Fischer, Frank
%A Gurevych, Iryna
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F schulz-etal-2019-analysis
%X Many complex discourse-level tasks can aid domain experts in their work but require costly expert annotations for data creation. To speed up and ease annotations, we investigate the viability of automatically generated annotation suggestions for such tasks. As an example, we choose a task that is particularly hard for both humans and machines: the segmentation and classification of epistemic activities in diagnostic reasoning texts. We create and publish a new dataset covering two domains and carefully analyse the suggested annotations. We find that suggestions have positive effects on annotation speed and performance, while not introducing noteworthy biases. Envisioning suggestion models that improve with newly annotated texts, we contrast methods for continuous model adjustment and suggest the most effective setup for suggestions in future expert tasks.
%R 10.18653/v1/P19-1265
%U https://aclanthology.org/P19-1265/
%U https://doi.org/10.18653/v1/P19-1265
%P 2761-2772
Markdown (Informal)
[Analysis of Automatic Annotation Suggestions for Hard Discourse-Level Tasks in Expert Domains](https://aclanthology.org/P19-1265/) (Schulz et al., ACL 2019)
ACL
- Claudia Schulz, Christian M. Meyer, Jan Kiesewetter, Michael Sailer, Elisabeth Bauer, Martin R. Fischer, Frank Fischer, and Iryna Gurevych. 2019. Analysis of Automatic Annotation Suggestions for Hard Discourse-Level Tasks in Expert Domains. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2761–2772, Florence, Italy. Association for Computational Linguistics.