@inproceedings{jana-etal-2019-compositionality,
title = "On the Compositionality Prediction of Noun Phrases using Poincar{\'e} Embeddings",
author = "Jana, Abhik and
Puzyrev, Dima and
Panchenko, Alexander and
Goyal, Pawan and
Biemann, Chris and
Mukherjee, Animesh",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1316",
doi = "10.18653/v1/P19-1316",
pages = "3263--3274",
abstract = "The compositionality degree of multiword expressions indicates to what extent the meaning of a phrase can be derived from the meaning of its constituents and their grammatical relations. Prediction of (non)-compositionality is a task that has been frequently addressed with distributional semantic models. We introduce a novel technique to blend hierarchical information with distributional information for predicting compositionality. In particular, we use hypernymy information of the multiword and its constituents encoded in the form of the recently introduced Poincar{\'e} embeddings in addition to the distributional information to detect compositionality for noun phrases. Using a weighted average of the distributional similarity and a Poincar{\'e} similarity function, we obtain consistent and substantial, statistically significant improvement across three gold standard datasets over state-of-the-art models based on distributional information only. Unlike traditional approaches that solely use an unsupervised setting, we have also framed the problem as a supervised task, obtaining comparable improvements. Further, we publicly release our Poincar{\'e} embeddings, which are trained on the output of handcrafted lexical-syntactic patterns on a large corpus.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jana-etal-2019-compositionality">
<titleInfo>
<title>On the Compositionality Prediction of Noun Phrases using Poincaré Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abhik</namePart>
<namePart type="family">Jana</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dima</namePart>
<namePart type="family">Puzyrev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Panchenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pawan</namePart>
<namePart type="family">Goyal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Biemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Animesh</namePart>
<namePart type="family">Mukherjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The compositionality degree of multiword expressions indicates to what extent the meaning of a phrase can be derived from the meaning of its constituents and their grammatical relations. Prediction of (non)-compositionality is a task that has been frequently addressed with distributional semantic models. We introduce a novel technique to blend hierarchical information with distributional information for predicting compositionality. In particular, we use hypernymy information of the multiword and its constituents encoded in the form of the recently introduced Poincaré embeddings in addition to the distributional information to detect compositionality for noun phrases. Using a weighted average of the distributional similarity and a Poincaré similarity function, we obtain consistent and substantial, statistically significant improvement across three gold standard datasets over state-of-the-art models based on distributional information only. Unlike traditional approaches that solely use an unsupervised setting, we have also framed the problem as a supervised task, obtaining comparable improvements. Further, we publicly release our Poincaré embeddings, which are trained on the output of handcrafted lexical-syntactic patterns on a large corpus.</abstract>
<identifier type="citekey">jana-etal-2019-compositionality</identifier>
<identifier type="doi">10.18653/v1/P19-1316</identifier>
<location>
<url>https://aclanthology.org/P19-1316</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>3263</start>
<end>3274</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On the Compositionality Prediction of Noun Phrases using Poincaré Embeddings
%A Jana, Abhik
%A Puzyrev, Dima
%A Panchenko, Alexander
%A Goyal, Pawan
%A Biemann, Chris
%A Mukherjee, Animesh
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F jana-etal-2019-compositionality
%X The compositionality degree of multiword expressions indicates to what extent the meaning of a phrase can be derived from the meaning of its constituents and their grammatical relations. Prediction of (non)-compositionality is a task that has been frequently addressed with distributional semantic models. We introduce a novel technique to blend hierarchical information with distributional information for predicting compositionality. In particular, we use hypernymy information of the multiword and its constituents encoded in the form of the recently introduced Poincaré embeddings in addition to the distributional information to detect compositionality for noun phrases. Using a weighted average of the distributional similarity and a Poincaré similarity function, we obtain consistent and substantial, statistically significant improvement across three gold standard datasets over state-of-the-art models based on distributional information only. Unlike traditional approaches that solely use an unsupervised setting, we have also framed the problem as a supervised task, obtaining comparable improvements. Further, we publicly release our Poincaré embeddings, which are trained on the output of handcrafted lexical-syntactic patterns on a large corpus.
%R 10.18653/v1/P19-1316
%U https://aclanthology.org/P19-1316
%U https://doi.org/10.18653/v1/P19-1316
%P 3263-3274
Markdown (Informal)
[On the Compositionality Prediction of Noun Phrases using Poincaré Embeddings](https://aclanthology.org/P19-1316) (Jana et al., ACL 2019)
ACL