@inproceedings{kitaev-etal-2019-multilingual,
title = "Multilingual Constituency Parsing with Self-Attention and Pre-Training",
author = "Kitaev, Nikita and
Cao, Steven and
Klein, Dan",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1340",
doi = "10.18653/v1/P19-1340",
pages = "3499--3505",
abstract = "We show that constituency parsing benefits from unsupervised pre-training across a variety of languages and a range of pre-training conditions. We first compare the benefits of no pre-training, fastText, ELMo, and BERT for English and find that BERT outperforms ELMo, in large part due to increased model capacity, whereas ELMo in turn outperforms the non-contextual fastText embeddings. We also find that pre-training is beneficial across all 11 languages tested; however, large model sizes (more than 100 million parameters) make it computationally expensive to train separate models for each language. To address this shortcoming, we show that joint multilingual pre-training and fine-tuning allows sharing all but a small number of parameters between ten languages in the final model. The 10x reduction in model size compared to fine-tuning one model per language causes only a 3.2{\%} relative error increase in aggregate. We further explore the idea of joint fine-tuning and show that it gives low-resource languages a way to benefit from the larger datasets of other languages. Finally, we demonstrate new state-of-the-art results for 11 languages, including English (95.8 F1) and Chinese (91.8 F1).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kitaev-etal-2019-multilingual">
<titleInfo>
<title>Multilingual Constituency Parsing with Self-Attention and Pre-Training</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikita</namePart>
<namePart type="family">Kitaev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Klein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We show that constituency parsing benefits from unsupervised pre-training across a variety of languages and a range of pre-training conditions. We first compare the benefits of no pre-training, fastText, ELMo, and BERT for English and find that BERT outperforms ELMo, in large part due to increased model capacity, whereas ELMo in turn outperforms the non-contextual fastText embeddings. We also find that pre-training is beneficial across all 11 languages tested; however, large model sizes (more than 100 million parameters) make it computationally expensive to train separate models for each language. To address this shortcoming, we show that joint multilingual pre-training and fine-tuning allows sharing all but a small number of parameters between ten languages in the final model. The 10x reduction in model size compared to fine-tuning one model per language causes only a 3.2% relative error increase in aggregate. We further explore the idea of joint fine-tuning and show that it gives low-resource languages a way to benefit from the larger datasets of other languages. Finally, we demonstrate new state-of-the-art results for 11 languages, including English (95.8 F1) and Chinese (91.8 F1).</abstract>
<identifier type="citekey">kitaev-etal-2019-multilingual</identifier>
<identifier type="doi">10.18653/v1/P19-1340</identifier>
<location>
<url>https://aclanthology.org/P19-1340</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>3499</start>
<end>3505</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multilingual Constituency Parsing with Self-Attention and Pre-Training
%A Kitaev, Nikita
%A Cao, Steven
%A Klein, Dan
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F kitaev-etal-2019-multilingual
%X We show that constituency parsing benefits from unsupervised pre-training across a variety of languages and a range of pre-training conditions. We first compare the benefits of no pre-training, fastText, ELMo, and BERT for English and find that BERT outperforms ELMo, in large part due to increased model capacity, whereas ELMo in turn outperforms the non-contextual fastText embeddings. We also find that pre-training is beneficial across all 11 languages tested; however, large model sizes (more than 100 million parameters) make it computationally expensive to train separate models for each language. To address this shortcoming, we show that joint multilingual pre-training and fine-tuning allows sharing all but a small number of parameters between ten languages in the final model. The 10x reduction in model size compared to fine-tuning one model per language causes only a 3.2% relative error increase in aggregate. We further explore the idea of joint fine-tuning and show that it gives low-resource languages a way to benefit from the larger datasets of other languages. Finally, we demonstrate new state-of-the-art results for 11 languages, including English (95.8 F1) and Chinese (91.8 F1).
%R 10.18653/v1/P19-1340
%U https://aclanthology.org/P19-1340
%U https://doi.org/10.18653/v1/P19-1340
%P 3499-3505
Markdown (Informal)
[Multilingual Constituency Parsing with Self-Attention and Pre-Training](https://aclanthology.org/P19-1340) (Kitaev et al., ACL 2019)
ACL