@inproceedings{bogin-etal-2019-representing,
title = "Representing Schema Structure with Graph Neural Networks for Text-to-{SQL} Parsing",
author = "Bogin, Ben and
Berant, Jonathan and
Gardner, Matt",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1448",
doi = "10.18653/v1/P19-1448",
pages = "4560--4565",
abstract = "Research on parsing language to SQL has largely ignored the structure of the database (DB) schema, either because the DB was very simple, or because it was observed at both training and test time. In spider, a recently-released text-to-SQL dataset, new and complex DBs are given at test time, and so the structure of the DB schema can inform the predicted SQL query. In this paper, we present an encoder-decoder semantic parser, where the structure of the DB schema is encoded with a graph neural network, and this representation is later used at both encoding and decoding time. Evaluation shows that encoding the schema structure improves our parser accuracy from 33.8{\%} to 39.4{\%}, dramatically above the current state of the art, which is at 19.7{\%}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bogin-etal-2019-representing">
<titleInfo>
<title>Representing Schema Structure with Graph Neural Networks for Text-to-SQL Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ben</namePart>
<namePart type="family">Bogin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Berant</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matt</namePart>
<namePart type="family">Gardner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Research on parsing language to SQL has largely ignored the structure of the database (DB) schema, either because the DB was very simple, or because it was observed at both training and test time. In spider, a recently-released text-to-SQL dataset, new and complex DBs are given at test time, and so the structure of the DB schema can inform the predicted SQL query. In this paper, we present an encoder-decoder semantic parser, where the structure of the DB schema is encoded with a graph neural network, and this representation is later used at both encoding and decoding time. Evaluation shows that encoding the schema structure improves our parser accuracy from 33.8% to 39.4%, dramatically above the current state of the art, which is at 19.7%.</abstract>
<identifier type="citekey">bogin-etal-2019-representing</identifier>
<identifier type="doi">10.18653/v1/P19-1448</identifier>
<location>
<url>https://aclanthology.org/P19-1448</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>4560</start>
<end>4565</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Representing Schema Structure with Graph Neural Networks for Text-to-SQL Parsing
%A Bogin, Ben
%A Berant, Jonathan
%A Gardner, Matt
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F bogin-etal-2019-representing
%X Research on parsing language to SQL has largely ignored the structure of the database (DB) schema, either because the DB was very simple, or because it was observed at both training and test time. In spider, a recently-released text-to-SQL dataset, new and complex DBs are given at test time, and so the structure of the DB schema can inform the predicted SQL query. In this paper, we present an encoder-decoder semantic parser, where the structure of the DB schema is encoded with a graph neural network, and this representation is later used at both encoding and decoding time. Evaluation shows that encoding the schema structure improves our parser accuracy from 33.8% to 39.4%, dramatically above the current state of the art, which is at 19.7%.
%R 10.18653/v1/P19-1448
%U https://aclanthology.org/P19-1448
%U https://doi.org/10.18653/v1/P19-1448
%P 4560-4565
Markdown (Informal)
[Representing Schema Structure with Graph Neural Networks for Text-to-SQL Parsing](https://aclanthology.org/P19-1448) (Bogin et al., ACL 2019)
ACL