@inproceedings{naseem-etal-2019-rewarding,
title = "Rewarding {S}match: Transition-Based {AMR} Parsing with Reinforcement Learning",
author = "Naseem, Tahira and
Shah, Abhishek and
Wan, Hui and
Florian, Radu and
Roukos, Salim and
Ballesteros, Miguel",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1451/",
doi = "10.18653/v1/P19-1451",
pages = "4586--4592",
abstract = "Our work involves enriching the Stack-LSTM transition-based AMR parser (Ballesteros and Al-Onaizan, 2017) by augmenting training with Policy Learning and rewarding the Smatch score of sampled graphs. In addition, we also combined several AMR-to-text alignments with an attention mechanism and we supplemented the parser with pre-processed concept identification, named entities and contextualized embeddings. We achieve a highly competitive performance that is comparable to the best published results. We show an in-depth study ablating each of the new components of the parser."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="naseem-etal-2019-rewarding">
<titleInfo>
<title>Rewarding Smatch: Transition-Based AMR Parsing with Reinforcement Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tahira</namePart>
<namePart type="family">Naseem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhishek</namePart>
<namePart type="family">Shah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hui</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Radu</namePart>
<namePart type="family">Florian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Salim</namePart>
<namePart type="family">Roukos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Miguel</namePart>
<namePart type="family">Ballesteros</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Our work involves enriching the Stack-LSTM transition-based AMR parser (Ballesteros and Al-Onaizan, 2017) by augmenting training with Policy Learning and rewarding the Smatch score of sampled graphs. In addition, we also combined several AMR-to-text alignments with an attention mechanism and we supplemented the parser with pre-processed concept identification, named entities and contextualized embeddings. We achieve a highly competitive performance that is comparable to the best published results. We show an in-depth study ablating each of the new components of the parser.</abstract>
<identifier type="citekey">naseem-etal-2019-rewarding</identifier>
<identifier type="doi">10.18653/v1/P19-1451</identifier>
<location>
<url>https://aclanthology.org/P19-1451/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>4586</start>
<end>4592</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Rewarding Smatch: Transition-Based AMR Parsing with Reinforcement Learning
%A Naseem, Tahira
%A Shah, Abhishek
%A Wan, Hui
%A Florian, Radu
%A Roukos, Salim
%A Ballesteros, Miguel
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F naseem-etal-2019-rewarding
%X Our work involves enriching the Stack-LSTM transition-based AMR parser (Ballesteros and Al-Onaizan, 2017) by augmenting training with Policy Learning and rewarding the Smatch score of sampled graphs. In addition, we also combined several AMR-to-text alignments with an attention mechanism and we supplemented the parser with pre-processed concept identification, named entities and contextualized embeddings. We achieve a highly competitive performance that is comparable to the best published results. We show an in-depth study ablating each of the new components of the parser.
%R 10.18653/v1/P19-1451
%U https://aclanthology.org/P19-1451/
%U https://doi.org/10.18653/v1/P19-1451
%P 4586-4592
Markdown (Informal)
[Rewarding Smatch: Transition-Based AMR Parsing with Reinforcement Learning](https://aclanthology.org/P19-1451/) (Naseem et al., ACL 2019)
ACL