@inproceedings{zhang-etal-2019-latent,
title = "Latent Variable Sentiment Grammar",
author = "Zhang, Liwen and
Tu, Kewei and
Zhang, Yue",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1457",
doi = "10.18653/v1/P19-1457",
pages = "4642--4651",
abstract = "Neural models have been investigated for sentiment classification over constituent trees. They learn phrase composition automatically by encoding tree structures but do not explicitly model sentiment composition, which requires to encode sentiment class labels. To this end, we investigate two formalisms with deep sentiment representations that capture sentiment subtype expressions by latent variables and Gaussian mixture vectors, respectively. Experiments on Stanford Sentiment Treebank (SST) show the effectiveness of sentiment grammar over vanilla neural encoders. Using ELMo embeddings, our method gives the best results on this benchmark.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2019-latent">
<titleInfo>
<title>Latent Variable Sentiment Grammar</title>
</titleInfo>
<name type="personal">
<namePart type="given">Liwen</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kewei</namePart>
<namePart type="family">Tu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Neural models have been investigated for sentiment classification over constituent trees. They learn phrase composition automatically by encoding tree structures but do not explicitly model sentiment composition, which requires to encode sentiment class labels. To this end, we investigate two formalisms with deep sentiment representations that capture sentiment subtype expressions by latent variables and Gaussian mixture vectors, respectively. Experiments on Stanford Sentiment Treebank (SST) show the effectiveness of sentiment grammar over vanilla neural encoders. Using ELMo embeddings, our method gives the best results on this benchmark.</abstract>
<identifier type="citekey">zhang-etal-2019-latent</identifier>
<identifier type="doi">10.18653/v1/P19-1457</identifier>
<location>
<url>https://aclanthology.org/P19-1457</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>4642</start>
<end>4651</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Latent Variable Sentiment Grammar
%A Zhang, Liwen
%A Tu, Kewei
%A Zhang, Yue
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F zhang-etal-2019-latent
%X Neural models have been investigated for sentiment classification over constituent trees. They learn phrase composition automatically by encoding tree structures but do not explicitly model sentiment composition, which requires to encode sentiment class labels. To this end, we investigate two formalisms with deep sentiment representations that capture sentiment subtype expressions by latent variables and Gaussian mixture vectors, respectively. Experiments on Stanford Sentiment Treebank (SST) show the effectiveness of sentiment grammar over vanilla neural encoders. Using ELMo embeddings, our method gives the best results on this benchmark.
%R 10.18653/v1/P19-1457
%U https://aclanthology.org/P19-1457
%U https://doi.org/10.18653/v1/P19-1457
%P 4642-4651
Markdown (Informal)
[Latent Variable Sentiment Grammar](https://aclanthology.org/P19-1457) (Zhang et al., ACL 2019)
ACL
- Liwen Zhang, Kewei Tu, and Yue Zhang. 2019. Latent Variable Sentiment Grammar. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4642–4651, Florence, Italy. Association for Computational Linguistics.