@inproceedings{kouris-etal-2019-abstractive,
title = "Abstractive Text Summarization Based on Deep Learning and Semantic Content Generalization",
author = "Kouris, Panagiotis and
Alexandridis, Georgios and
Stafylopatis, Andreas",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1501/",
doi = "10.18653/v1/P19-1501",
pages = "5082--5092",
abstract = "This work proposes a novel framework for enhancing abstractive text summarization based on the combination of deep learning techniques along with semantic data transformations. Initially, a theoretical model for semantic-based text generalization is introduced and used in conjunction with a deep encoder-decoder architecture in order to produce a summary in generalized form. Subsequently, a methodology is proposed which transforms the aforementioned generalized summary into human-readable form, retaining at the same time important informational aspects of the original text and addressing the problem of out-of-vocabulary or rare words. The overall approach is evaluated on two popular datasets with encouraging results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kouris-etal-2019-abstractive">
<titleInfo>
<title>Abstractive Text Summarization Based on Deep Learning and Semantic Content Generalization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Panagiotis</namePart>
<namePart type="family">Kouris</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Georgios</namePart>
<namePart type="family">Alexandridis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Stafylopatis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This work proposes a novel framework for enhancing abstractive text summarization based on the combination of deep learning techniques along with semantic data transformations. Initially, a theoretical model for semantic-based text generalization is introduced and used in conjunction with a deep encoder-decoder architecture in order to produce a summary in generalized form. Subsequently, a methodology is proposed which transforms the aforementioned generalized summary into human-readable form, retaining at the same time important informational aspects of the original text and addressing the problem of out-of-vocabulary or rare words. The overall approach is evaluated on two popular datasets with encouraging results.</abstract>
<identifier type="citekey">kouris-etal-2019-abstractive</identifier>
<identifier type="doi">10.18653/v1/P19-1501</identifier>
<location>
<url>https://aclanthology.org/P19-1501/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>5082</start>
<end>5092</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Abstractive Text Summarization Based on Deep Learning and Semantic Content Generalization
%A Kouris, Panagiotis
%A Alexandridis, Georgios
%A Stafylopatis, Andreas
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F kouris-etal-2019-abstractive
%X This work proposes a novel framework for enhancing abstractive text summarization based on the combination of deep learning techniques along with semantic data transformations. Initially, a theoretical model for semantic-based text generalization is introduced and used in conjunction with a deep encoder-decoder architecture in order to produce a summary in generalized form. Subsequently, a methodology is proposed which transforms the aforementioned generalized summary into human-readable form, retaining at the same time important informational aspects of the original text and addressing the problem of out-of-vocabulary or rare words. The overall approach is evaluated on two popular datasets with encouraging results.
%R 10.18653/v1/P19-1501
%U https://aclanthology.org/P19-1501/
%U https://doi.org/10.18653/v1/P19-1501
%P 5082-5092
Markdown (Informal)
[Abstractive Text Summarization Based on Deep Learning and Semantic Content Generalization](https://aclanthology.org/P19-1501/) (Kouris et al., ACL 2019)
ACL