@inproceedings{zhou-rush-2019-simple,
title = "Simple Unsupervised Summarization by Contextual Matching",
author = "Zhou, Jiawei and
Rush, Alexander",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1503/",
doi = "10.18653/v1/P19-1503",
pages = "5101--5106",
abstract = "We propose an unsupervised method for sentence summarization using only language modeling. The approach employs two language models, one that is generic (i.e. pretrained), and the other that is specific to the target domain. We show that by using a product-of-experts criteria these are enough for maintaining continuous contextual matching while maintaining output fluency. Experiments on both abstractive and extractive sentence summarization data sets show promising results of our method without being exposed to any paired data."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhou-rush-2019-simple">
<titleInfo>
<title>Simple Unsupervised Summarization by Contextual Matching</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiawei</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Rush</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose an unsupervised method for sentence summarization using only language modeling. The approach employs two language models, one that is generic (i.e. pretrained), and the other that is specific to the target domain. We show that by using a product-of-experts criteria these are enough for maintaining continuous contextual matching while maintaining output fluency. Experiments on both abstractive and extractive sentence summarization data sets show promising results of our method without being exposed to any paired data.</abstract>
<identifier type="citekey">zhou-rush-2019-simple</identifier>
<identifier type="doi">10.18653/v1/P19-1503</identifier>
<location>
<url>https://aclanthology.org/P19-1503/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>5101</start>
<end>5106</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Simple Unsupervised Summarization by Contextual Matching
%A Zhou, Jiawei
%A Rush, Alexander
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F zhou-rush-2019-simple
%X We propose an unsupervised method for sentence summarization using only language modeling. The approach employs two language models, one that is generic (i.e. pretrained), and the other that is specific to the target domain. We show that by using a product-of-experts criteria these are enough for maintaining continuous contextual matching while maintaining output fluency. Experiments on both abstractive and extractive sentence summarization data sets show promising results of our method without being exposed to any paired data.
%R 10.18653/v1/P19-1503
%U https://aclanthology.org/P19-1503/
%U https://doi.org/10.18653/v1/P19-1503
%P 5101-5106
Markdown (Informal)
[Simple Unsupervised Summarization by Contextual Matching](https://aclanthology.org/P19-1503/) (Zhou & Rush, ACL 2019)
ACL