@inproceedings{zhang-etal-2019-empirical,
title = "An Empirical Investigation of Structured Output Modeling for Graph-based Neural Dependency Parsing",
author = "Zhang, Zhisong and
Ma, Xuezhe and
Hovy, Eduard",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1562/",
doi = "10.18653/v1/P19-1562",
pages = "5592--5598",
abstract = "In this paper, we investigate the aspect of structured output modeling for the state-of-the-art graph-based neural dependency parser (Dozat and Manning, 2017). With evaluations on 14 treebanks, we empirically show that global output-structured models can generally obtain better performance, especially on the metric of sentence-level Complete Match. However, probably because neural models already learn good global views of the inputs, the improvement brought by structured output modeling is modest."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2019-empirical">
<titleInfo>
<title>An Empirical Investigation of Structured Output Modeling for Graph-based Neural Dependency Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhisong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuezhe</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduard</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we investigate the aspect of structured output modeling for the state-of-the-art graph-based neural dependency parser (Dozat and Manning, 2017). With evaluations on 14 treebanks, we empirically show that global output-structured models can generally obtain better performance, especially on the metric of sentence-level Complete Match. However, probably because neural models already learn good global views of the inputs, the improvement brought by structured output modeling is modest.</abstract>
<identifier type="citekey">zhang-etal-2019-empirical</identifier>
<identifier type="doi">10.18653/v1/P19-1562</identifier>
<location>
<url>https://aclanthology.org/P19-1562/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>5592</start>
<end>5598</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Empirical Investigation of Structured Output Modeling for Graph-based Neural Dependency Parsing
%A Zhang, Zhisong
%A Ma, Xuezhe
%A Hovy, Eduard
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F zhang-etal-2019-empirical
%X In this paper, we investigate the aspect of structured output modeling for the state-of-the-art graph-based neural dependency parser (Dozat and Manning, 2017). With evaluations on 14 treebanks, we empirically show that global output-structured models can generally obtain better performance, especially on the metric of sentence-level Complete Match. However, probably because neural models already learn good global views of the inputs, the improvement brought by structured output modeling is modest.
%R 10.18653/v1/P19-1562
%U https://aclanthology.org/P19-1562/
%U https://doi.org/10.18653/v1/P19-1562
%P 5592-5598
Markdown (Informal)
[An Empirical Investigation of Structured Output Modeling for Graph-based Neural Dependency Parsing](https://aclanthology.org/P19-1562/) (Zhang et al., ACL 2019)
ACL