@inproceedings{simpson-etal-2019-predicting,
title = "Predicting Humorousness and Metaphor Novelty with {G}aussian Process Preference Learning",
author = "Simpson, Edwin and
Do Dinh, Erik-L{\^a}n and
Miller, Tristan and
Gurevych, Iryna",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1572/",
doi = "10.18653/v1/P19-1572",
pages = "5716--5728",
abstract = "The inability to quantify key aspects of creative language is a frequent obstacle to natural language understanding. To address this, we introduce novel tasks for evaluating the creativeness of language{---}namely, scoring and ranking text by humorousness and metaphor novelty. To sidestep the difficulty of assigning discrete labels or numeric scores, we learn from pairwise comparisons between texts. We introduce a Bayesian approach for predicting humorousness and metaphor novelty using Gaussian process preference learning (GPPL), which achieves a Spearman`s {\ensuremath{\rho}} of 0.56 against gold using word embeddings and linguistic features. Our experiments show that given sparse, crowdsourced annotation data, ranking using GPPL outperforms best{--}worst scaling. We release a new dataset for evaluating humour containing 28,210 pairwise comparisons of 4,030 texts, and make our software freely available."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="simpson-etal-2019-predicting">
<titleInfo>
<title>Predicting Humorousness and Metaphor Novelty with Gaussian Process Preference Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Edwin</namePart>
<namePart type="family">Simpson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik-Lân</namePart>
<namePart type="family">Do Dinh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tristan</namePart>
<namePart type="family">Miller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The inability to quantify key aspects of creative language is a frequent obstacle to natural language understanding. To address this, we introduce novel tasks for evaluating the creativeness of language—namely, scoring and ranking text by humorousness and metaphor novelty. To sidestep the difficulty of assigning discrete labels or numeric scores, we learn from pairwise comparisons between texts. We introduce a Bayesian approach for predicting humorousness and metaphor novelty using Gaussian process preference learning (GPPL), which achieves a Spearman‘s \ensuremathρ of 0.56 against gold using word embeddings and linguistic features. Our experiments show that given sparse, crowdsourced annotation data, ranking using GPPL outperforms best–worst scaling. We release a new dataset for evaluating humour containing 28,210 pairwise comparisons of 4,030 texts, and make our software freely available.</abstract>
<identifier type="citekey">simpson-etal-2019-predicting</identifier>
<identifier type="doi">10.18653/v1/P19-1572</identifier>
<location>
<url>https://aclanthology.org/P19-1572/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>5716</start>
<end>5728</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Predicting Humorousness and Metaphor Novelty with Gaussian Process Preference Learning
%A Simpson, Edwin
%A Do Dinh, Erik-Lân
%A Miller, Tristan
%A Gurevych, Iryna
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F simpson-etal-2019-predicting
%X The inability to quantify key aspects of creative language is a frequent obstacle to natural language understanding. To address this, we introduce novel tasks for evaluating the creativeness of language—namely, scoring and ranking text by humorousness and metaphor novelty. To sidestep the difficulty of assigning discrete labels or numeric scores, we learn from pairwise comparisons between texts. We introduce a Bayesian approach for predicting humorousness and metaphor novelty using Gaussian process preference learning (GPPL), which achieves a Spearman‘s \ensuremathρ of 0.56 against gold using word embeddings and linguistic features. Our experiments show that given sparse, crowdsourced annotation data, ranking using GPPL outperforms best–worst scaling. We release a new dataset for evaluating humour containing 28,210 pairwise comparisons of 4,030 texts, and make our software freely available.
%R 10.18653/v1/P19-1572
%U https://aclanthology.org/P19-1572/
%U https://doi.org/10.18653/v1/P19-1572
%P 5716-5728
Markdown (Informal)
[Predicting Humorousness and Metaphor Novelty with Gaussian Process Preference Learning](https://aclanthology.org/P19-1572/) (Simpson et al., ACL 2019)
ACL