@inproceedings{clark-etal-2019-bam,
title = "{BAM}! Born-Again Multi-Task Networks for Natural Language Understanding",
author = "Clark, Kevin and
Luong, Minh-Thang and
Khandelwal, Urvashi and
Manning, Christopher D. and
Le, Quoc V.",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1595/",
doi = "10.18653/v1/P19-1595",
pages = "5931--5937",
abstract = "It can be challenging to train multi-task neural networks that outperform or even match their single-task counterparts. To help address this, we propose using knowledge distillation where single-task models teach a multi-task model. We enhance this training with teacher annealing, a novel method that gradually transitions the model from distillation to supervised learning, helping the multi-task model surpass its single-task teachers. We evaluate our approach by multi-task fine-tuning BERT on the GLUE benchmark. Our method consistently improves over standard single-task and multi-task training."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="clark-etal-2019-bam">
<titleInfo>
<title>BAM! Born-Again Multi-Task Networks for Natural Language Understanding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Clark</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minh-Thang</namePart>
<namePart type="family">Luong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Urvashi</namePart>
<namePart type="family">Khandelwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Manning</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Quoc</namePart>
<namePart type="given">V</namePart>
<namePart type="family">Le</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>It can be challenging to train multi-task neural networks that outperform or even match their single-task counterparts. To help address this, we propose using knowledge distillation where single-task models teach a multi-task model. We enhance this training with teacher annealing, a novel method that gradually transitions the model from distillation to supervised learning, helping the multi-task model surpass its single-task teachers. We evaluate our approach by multi-task fine-tuning BERT on the GLUE benchmark. Our method consistently improves over standard single-task and multi-task training.</abstract>
<identifier type="citekey">clark-etal-2019-bam</identifier>
<identifier type="doi">10.18653/v1/P19-1595</identifier>
<location>
<url>https://aclanthology.org/P19-1595/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>5931</start>
<end>5937</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BAM! Born-Again Multi-Task Networks for Natural Language Understanding
%A Clark, Kevin
%A Luong, Minh-Thang
%A Khandelwal, Urvashi
%A Manning, Christopher D.
%A Le, Quoc V.
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F clark-etal-2019-bam
%X It can be challenging to train multi-task neural networks that outperform or even match their single-task counterparts. To help address this, we propose using knowledge distillation where single-task models teach a multi-task model. We enhance this training with teacher annealing, a novel method that gradually transitions the model from distillation to supervised learning, helping the multi-task model surpass its single-task teachers. We evaluate our approach by multi-task fine-tuning BERT on the GLUE benchmark. Our method consistently improves over standard single-task and multi-task training.
%R 10.18653/v1/P19-1595
%U https://aclanthology.org/P19-1595/
%U https://doi.org/10.18653/v1/P19-1595
%P 5931-5937
Markdown (Informal)
[BAM! Born-Again Multi-Task Networks for Natural Language Understanding](https://aclanthology.org/P19-1595/) (Clark et al., ACL 2019)
ACL