@inproceedings{zang-etal-2019-automated,
title = "Automated Chess Commentator Powered by Neural Chess Engine",
author = "Zang, Hongyu and
Yu, Zhiwei and
Wan, Xiaojun",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1597/",
doi = "10.18653/v1/P19-1597",
pages = "5952--5961",
abstract = "In this paper, we explore a new approach for automated chess commentary generation, which aims to generate chess commentary texts in different categories (e.g., \textit{description}, \textit{comparison}, \textit{planning}, etc.). We introduce a neural chess engine into text generation models to help with encoding boards, predicting moves, and analyzing situations. By jointly training the neural chess engine and the generation models for different categories, the models become more effective. We conduct experiments on 5 categories in a benchmark Chess Commentary dataset and achieve inspiring results in both automatic and human evaluations."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zang-etal-2019-automated">
<titleInfo>
<title>Automated Chess Commentator Powered by Neural Chess Engine</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hongyu</namePart>
<namePart type="family">Zang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiwei</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we explore a new approach for automated chess commentary generation, which aims to generate chess commentary texts in different categories (e.g., description, comparison, planning, etc.). We introduce a neural chess engine into text generation models to help with encoding boards, predicting moves, and analyzing situations. By jointly training the neural chess engine and the generation models for different categories, the models become more effective. We conduct experiments on 5 categories in a benchmark Chess Commentary dataset and achieve inspiring results in both automatic and human evaluations.</abstract>
<identifier type="citekey">zang-etal-2019-automated</identifier>
<identifier type="doi">10.18653/v1/P19-1597</identifier>
<location>
<url>https://aclanthology.org/P19-1597/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>5952</start>
<end>5961</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automated Chess Commentator Powered by Neural Chess Engine
%A Zang, Hongyu
%A Yu, Zhiwei
%A Wan, Xiaojun
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F zang-etal-2019-automated
%X In this paper, we explore a new approach for automated chess commentary generation, which aims to generate chess commentary texts in different categories (e.g., description, comparison, planning, etc.). We introduce a neural chess engine into text generation models to help with encoding boards, predicting moves, and analyzing situations. By jointly training the neural chess engine and the generation models for different categories, the models become more effective. We conduct experiments on 5 categories in a benchmark Chess Commentary dataset and achieve inspiring results in both automatic and human evaluations.
%R 10.18653/v1/P19-1597
%U https://aclanthology.org/P19-1597/
%U https://doi.org/10.18653/v1/P19-1597
%P 5952-5961
Markdown (Informal)
[Automated Chess Commentator Powered by Neural Chess Engine](https://aclanthology.org/P19-1597/) (Zang et al., ACL 2019)
ACL